
Machine Learning for Video-Based 
Rendering 

Arno Schadl 
arno@schoedl. org 

Irfan Essa 
irjan@cc.gatech.edu 

Georgia Institute of Technology 
GVU Center / College of Computing 

Atlanta, GA 30332-0280, USA. 

Abstract 

We present techniques for rendering and animation of realistic 
scenes by analyzing and training on short video sequences. This 
work extends the new paradigm for computer animation, video tex
tures, which uses recorded video to generate novel animations by 
replaying the video samples in a new order. Here we concentrate 
on video sprites, which are a special type of video texture. In 
video sprites, instead of storing whole images, the object of inter
est is separated from the background and the video samples are 
stored as a sequence of alpha-matted sprites with associated veloc
ity information. They can be rendered anywhere on the screen to 
create a novel animation of the object. We present methods to cre
ate such animations by finding a sequence of sprite samples that 
is both visually smooth and follows a desired path. To estimate 
visual smoothness, we train a linear classifier to estimate visual 
similarity between video samples. If the motion path is known in 
advance, we use beam search to find a good sample sequence. We 
can specify the motion interactively by precomputing the sequence 
cost function using Q-Iearning. 

1 Introduction 

Computer animation of realistic characters requires an explicitly defined model with 
control parameters. The animator defines keyframes for these parameters, which 
are interpolated to generate the animation. Both the model generation and the 
motion parameter adjustment are often manual, costly tasks. 

Recently, researchers in computer graphics and computer vision have proposed ef
ficient methods to generate novel views by analyzing captured images. These tech
niques, called image-based r'endering, require minimal user interaction and allow 
photorealistic synthesis of still scenes[3]. 

In [7] we introduced a new paradigm for image synthesis, which we call video tex
tures. In that paper, we extended the paradigm of image-based rendering into 
video-based rendering, generating novel animations from video. A video texture 



transitions~_---__ 

Figure 1: An animation is created from reordered video sprite samples. Transitions 
between samples that are played out of the original order must be visually smooth. 

turns a finite duration video into a continuous infinitely varying stream of images. 
We treat the video sequence as a collection of image samples, from which we auto
matically select suitable sequences to form the new animation. 

Instead of using the image as a whole, we can also record an object against a blue
screen and separate it from the background using background-subtraction. We store 
the created opacity image (alpha channel) and the motion of the object for every 
sample. We can then render the object at arbitrary image locations to generate 
animations, as shown in Figure 1. We call this special type of video texture a video 
sprite. 

A complete description of the video textures paradigm and techniques to generate 
video textures is presented in [7]. In this paper, we address the controlled animation 
of video sprites. To generate video textures or video sprites, we have to optimize the 
sequence of samples so that the resulting animation looks continuous and smooth, 
even if the samples are not played in their original order. This optimization requires 
a visual similarity metric between sprite images, which has to be as close as possible 
to the human perception of similarity. The simple L2 image distance used in [7] 
gives poor results for our example video sprite, a fish swimming in a tank. In 
Section 2 we describe how to improve the similarity metric by training a classifier 
on manually labeled data [1]. 

Video sprites usually require some form of motion control. We present two t ech
niques to control the sprite motion while preserving the visual smoothness of the 
sequence. In Section 3 we compute a good sequence of samples for a motion path 
scripted in advance. Since the number of possible sequences is too large to explore 
exhaustively, we use beam search to make the optimization manageable. 

For applications like computer games, we would like to control the motion of the 
sprite interactively. We achieve this goal using a t echnique similar to Q-learning, 
as described in Section 4. 

1.1 Previous work 

Before the advent of 3D graphics, the idea of creating animations by sequencing 
2D sprites showing different poses and actions was widely used in computer games. 
Almost all characters in fighting and jump-and-run games are animated in this 
fashion. Game artists had to generate all these animations manually. 



Figure 2: Relationship between image similarities and transitions. 

There is very little earlier work in research on automatically sequencing 2D views 
for animation. Video Rewrite [2] is the work most closely related to video textures. 
It creates lip motion for a new audio track from a training video of the subject 
speaking by replaying short subsequences of the training video fitting best to the 
sequence of phonemes. To our knowledge, nobody has automatically generated an 
object animation from video thus far. 

Of course, we are not the first applying learning techniques to animation. The 
NeuroAnimator [4], for example, uses a neural network to simulate a physics-based 
model. Neural networks have also been used to improve visual similarity classifica
tion [6]. 

2 Training the similarity metric 

Video textures reorder the original video samples into a new sequence. If the se
quence of samples is not the original order, we have to insure that transitions be
tween samples that are out of order are visually smooth. More precisely, in a 
transition from sample i to j, we substitute the successor of sample i by sample 
j and the predecessor of sample j by sample i. So sample i should be similar to 
sample j - 1 and sample i + 1 should be similar to sample j (Figure 2). 

The distance function Dij between two samples i and j should be small if we can 
substitute one image for the other without a noticeable discontinuity or "jump". 
The simple L2 image distance used in [7] gives poor results for the fish sprite, because 
it fails to capture important information like the orientation of the fish. Instead 
of trying to code this information into our system, we train a linear classifier from 
manually labeled training data. The classifier is based on six features extracted 
from a sprite image pair: 

• difference in velocity magnitude, 

• difference in velocity direction, measured in angle, 

• sum of color L2 differences, weighted by the minimum of the two pixel alpha 
values, 

• sum of absolute differences in the alpha channel, 

• difference in average color, 

• difference in blob area, computed as the sum of all alpha values. 

The manual labels for a sprite pair are binary: visually acceptable or unacceptable. 
To create the labels, we guess a rough estimator and then manually correct the 
classification of this estimator. Since it is more important to avoid visual glitches 
than to exploit every possible transition, we penalize false-positives 10 times higher 
than false-negatives in our training. 



segment boundary,: 
I I 
k 

Figure 3: The components of the path cost function. 

All sprite pairs that the classifier rejected are no longer considered for transitions. 
If the pair of samples i and j is kept , we use the value of the linear classifying 
function as a measure for visual difference D ij . The pairs i, j with i = j are treated 
just as any other pair, but of course they have minimal visual difference. The cost 
for a transition Tij from sample i to sample j is then T ij = ~Di , j - l + ~Di+ l ,j . 

3 Motion path scripting 

A common approach in animation is to specify all constraints before rendering the 
animation [8]. In this section we describe how to generate a good sequence of sprites 
from a specified motion path, given as a series of line segments. We specify a cost 
function for a given path, and starting at the beginning of the first segment, we 
explore the tree of possible transitions and find the path of least cost. 

3.1 Sequence cost function 

The total cost function is a sum of per-frame costs. For every new sequence frame, 
in addition to the transition cost, as discussed in the previous section, we penalize 
any deviation from the defined path and movement direction. We only constrain 
the motion path, not the velocity magnitude or the motion timing because the fewer 
constraints we impose, the bett er the chance of finding a smooth sequence using 
the limited number of available video samples. 

The path is composed of line segments and we keep track of the line segment that 
the sprite is currently expected to follow. We compute the error function only with 
respect to this line segment. As soon as the orthogonal projection of the sprite 
position onto the segment passes the end of the current segment, we switch to the 
next segment. This avoids the ambiguity of which line segment to follow when paths 
are self-intersecting. 

We define an animation sequence (iI, PI, h), (i2,P2, I2) ... (iN ,PN , IN) where ik, 1 ::; 
k ::; N, is the sample shown in frame k, Pk is the position at which it is shown, and 
Ik is the line segment that it has to follow. Let d(Pk' Id be the distance from point 
Pk to line Ik ' V(ik) the estimat ed velocity of the sprite at sample ik, and L(v(ik), Ik) 
is the angle between the velocity vector and the line segment. The cost function C 
for the frame k from this sequence is then 

(1) 

where WI and W2 are user-defined weights that trade off visual smoothness against 
the motion constraints. 



3.2 Sequence tree search 

We seed our search with all possible starting samples and set the sprite position 
to the starting position of the first line segment. For every sequence, we store the 
total cost up to the current end of the path, the current position of the sprite, the 
current sample and the current line segment. 

Since from any given video sample there can be many possible transitions and it 
is impossible to explore the whole tree, we employ beam search to prune the set 
of sequences after advancing the tree depth by one transition. At every depth we 
keep the 50000 sequences with least accumulated cost. When the sprite reaches the 
end of the last segment, the sequence with lowest total cost is chosen. Section 5 
describes the running time of the algorithm. 

4 Interactive motion control 

For interactive applications like computer games, video sprites allow us to generate 
high-quality graphics without the computational burden of high-end modeling and 
rendering. In this section we show how to control video sprite motion interactively 
without time-consuming optimization over a planned path. 

The following observation allows us to compute the path tree in a much more 
efficient manner: If W2 in equation (1) is set to zero, the sprite does not adhere to 
a certain path but still moves in the desired general direction. If we assume the 
line segment is infinitely long, or in other words is indicating only a general motion 
direction l , equation (1) is independent of the position Pk of the sprite and only 
depends on the sample that is currently shown. We now have to find the lowest 
cost path through this set of states, a problem which is solved using Q-Iearning [5] : 
The cost Fij for a path starting at sample i transitioning to sample j is 

(2) 

In other words, the least possible cost, starting from sample i and going to sample 
j, is the cost of the transition from i to j plus the least possible cost of all paths 
starting from j. Since this recursion is infinite, we have to introduce a decay term 
o ~ (t ~ 1 to assure convergence. To solve equation (2), we initialize with Fij = Tij 

for all i and j and then iterate over the equation until convergence. 

4.1 Interactive switching between cost functions 

We described above how to compute a good path for a given motion direction l. To 
interactively control the sprite, we precompute Fij for multiple motion directions, 
for example for the eight compass directions. The user can then interactively specify 
the motion direction by choosing one of the precomputed cost functions. 

Unfortunately, the cost function is precomputed to be optimal only for a certain 
motion direction, and does not take into account any switching between cost func
tions, which can cause discontinuous motion when the user changes direction. Note 
that switching to a motion path without any motion constraint (equation (2) with 
WI = 0) will never cause any additional discontinuities, because the smoothness 
constraint is the only one left. Thus, we solve our problem by precomputing a cost 
function that does not constrain the motion for a couple of transitions, and then 
starts to constrain the motion with the new motion direction. The response delay 
allows us to gracefully adjust to the new cost function. For every precomputed 


