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Abstract

The W-S (Wake-Sleep) algorithm is a simple learning rule for the models
with hidden variables. It is shown that this algorithm can be applied to
a factor analysis model which is a linear version of the Helmholtz ma-
chine. But even for a factor analysis model, the general convergence is
not proved theoretically. In this article, we describe the geometrical un-
derstanding of the W-S algorithm in contrast with the EM (Expectation-
Maximization) algorithm and the em algorithm. As the result, we prove
the convergence of the W-S algorithm for the factor analysis model. We
also show the condition for the convergence in general models.

1 INTRODUCTION

The W-S algorithm[5] is a simple Hebbian learning algorithm. Neal and Dayan applied the
W-S algorithm to a factor analysis model[7]. This model can be seen as a linear version of
the Helmholtz machine[3]. As it is mentioned in[7], the convergence of the W-S algorithm
has not been proved theoretically even for this simple model.

From the similarity of the W-S and the EM algorithms and also from empirical results, the
W-S algorithm seems to work for a factor analysis model. But there is an essential differ-
ence between the W-S and the EM algorithms. In this article, we show the em algorithm[2],
which is the information geometrical version of the EM algorithm, and describe the essen-
tial difference. From the result, we show that we cannot rely on the similarity for the reason
of the W-S algorithm to work. However, even with this difference, the W-S algorithm works
on the factor analysis model and we can prove it theoretically. We show the proof and also
show the condition of the W-S algorithm to work in general models.
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2 FACTOR ANALYSIS MODEL AND THE W-S ALGORITHM

A factor analysis model with a single factor is defined as the following generative model,

Generative model T =+ Yyg + €,
where £ = (z,---,7,)7 is a n dimensional real-valued visible inputs, y ~
N(0,1) is the single invisible factor, g is a vector of “factor loadings”, p is the
overall means vector which is set to be zero in this article, and € ~ A(0, L) is the
noise with a diagonal covariance matrix, £ = diag(c?). In a Helmholtz machine,
this generative model is accompanied by a recognition model which is defined as,

Recognition model y=7rTx+4,
where 7 is the vector of recognition weights and § ~ A/(0, s2) is the noise.

When data z;, -+ , Ty is given, we want to estimate the MLE(Maximum Likelihood Es-
timator) of g and X'. The W-S algorithm can be applied[7] for learning of this model.

Wake-phase: From the training set {x;} choose a number of & randomly and for each
data, generate y according to the recognition model y = r{ x + 6,8 ~ N(0, 7).
Update g and X' as follows using these x’s and y’s, where « is a small positive
number and J3 is slightly less than 1.

g1 = ge+o(z— gy (1
Ue?,t-i-l = 50?,: + (1 = B)(zi — 9i.49)%, (2)
where  denotes the averaging over the chosen data.

Sleep-phase: According to the updated generative model € = ygiy1 + €y ~
N(0,1),e ~ N(0,diag(c?,,)), generate a number of  and y. And update 7
and s? as,

Tiq1 = Tetaly—-riz)z (3)
sty = Bsi+(1-P)y—riz) @

By iterating these phases, they try to find the MLE as the converged point.

For the following discussion, let us define two probability densities p and g, where p is the
density of the generative model, and g is that of the recognition model.

Let @ = (g, X)), and the generative model gives the density function of = and y as,

T y—-1 T y-1 1

while the recognition model gives the distribution of y conditional to = as the following,
q(ylz;m) ~ N(r"z,s°),
where, § = (r,s?). From the data z;, - - - , z, we define,

N
_ 1 T
C——N—gmsms , q(x) ~N(0,C).

With this ¢(z), we define ¢(y, x; ) as,
aty.zim) = a(@)atvlzim) = exp (3w (4 ) b)) ©

(logs® +log|C| + (n + 1) log 2) .

B =

_ 1/ 1] =T _
B=— ( T ) yP(m) =
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3 THE EM AND THE emn ALGORITHMS FOR A FACTOR
ANALYSIS MODEL

It is mentioned that the W-S algorithm is similar to the EM algorithm[4]([5][7]). But there
is an essential difference between them. In this section, first, we show the EM algorithm.
We also describe the em algorithm[2] which gives us the information geometrical under-
standing of the EM algorithm. With these results, we will show the difference between
W-S and the EM algorithms in the next section.

The EM algorithm consists of the following two steps.

E-step: Define (8, 6,) as,

N
1
Q(Bi Gt) = ﬁ Z Ep(yi::,;ﬂ:) [lng(y, s, 9)]

8:1
M-step: Update 0 as,
0141 = arggiaxQ(B,Bg),

(1+97% '9)CE " g
QtTEt_lczt_lgt +1 +9?2t_19t

g7 Er'c )
1+97%7'g:)
(7)

E, [-] denotes taking the average with the probability distribution p. The iteration of these
two steps converges to give the MLE.

giy1 = , T4 = diag (C = gi41

The EM algorithm only uses the generative model, but the em algorithm([2] also uses the
recognition model. The em algorithm consists of the e and m steps which are defined as the
e and m projections[ 1] between the two manifolds M and D. The manifolds are defined
as follows.

Model manifold M: M & {p(y,z;0)|0 = (g,diag(0?)),g € R",0 < 0; < o0}.

Data manifold D: D & {a(y,z;m)|n = (r,s%),7 € R*,0 < s < oo}, g(x) include the
matrix C which is defined by the data, and this is called the “data manifold”.

D

e - projection
KL(q(m).p(8))

KL(q(n).p(®))
\ jection

1

LI 0, M

Figure 1: Information geometrical understanding of the em algorithm

Figure 1 schematically shows the em algorithm. It consists of two steps, e and m steps. On
each step, parameters of recognition and generative models are updated respectively.
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e-step: Update 7 as the e projection of p(y, x; 8;) on D.

Me4+1 = argmin K L(q(n),p(6:)) (8)
n
it 1
Tip1 = £ 0 87 = 9)

1+9/Z g’ 1+975 g
where K L(g(n), p(@)) is the Kullback-Leibler divergence defined as,
q(y,z;m)
KL(q(n),p(0)) = E;yse: [lo —-——]
(a(m), p( a(y,z5m) |108 p(y, z;0)
m-step: Update @ as the m projection of g(y, ;) on M.
641 = arg;nin KL(g(n141),p(8)) (10)

CT:+1
2 T
St+1 + 711 O

gty1 = , Sy = diag (C — ge17,C) - (11)

By substituting (9) for 7441 and s7,; in (11), it is easily proved that (11) is equivalent to
(7), and the em and EM algorithms are equivalent.

4 THE DIFFERENCE BETWEEN THE W-S AND THE EM
ALGORITHMS

The wake-phase corresponds to a gradient flow of the M-step[7] in the stochastic sense.
But the sleep-phase is not a gradient flow of the E-step. In order to see these clear, we show
the detail of the W-S phases in this section.

First, we show the averages of (1), (2), (3) and (4),

Cr
A & :
. C ___Cr 12
g1 = ge — alsy + 74 Cry) (gt s?+r;rC'r:) (k)

Sip1 =T — (1-B) (Z¢ —diag (C —2(Cry)gf + (57 +rfCri)geg?))  (13)

$ S gt+1
Tiy1 =7 —a( Dy + 9t+19T )| re — A = (14)
. 14+ 97, 25 90
sf_,_l =382~ (1-p) (sf - ((1- galrg)z + 'rtTE}Hn)) ; (15)

As the K-L divergence is rewritten as K L(q(n),p(8)),

KL(g(n), 5(0)) = 3tr(B™4) - "2+ y(6) — (),

the derivatives of this K-L divergence with respect to 8 = (g, X) are,

seKLam.p®) = 2(e+r70n)=") (9= ) ¥

%I(L(q(n),p(ﬂ)) = X2 (L -diag (C - 2CrgT + (s> +r"Cr)gg™)) (17)

With these results, we can rewrite the wake-phase as,

a
3 5 5g KLam), p(6) (18)

o
= —-(1- ﬁ)EféEKL(Q(m):P(Gf]) (19)

gt+1 = Gt —
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Since X is a positive definite matrix, the wake-phase is a gradient flow of m-step which is
defined as (10).

On the other hand, K L(p(8),q(n)) is,

KL(p(@).am) = 5tr(A™B) ~ % +(n) - v(0).

2
The derivatives of this K-L divergence respect to 7 and s are,
é) 2 T r-lg
S KLBO.am) = S +aa) (r- o) @
9 _ 1 2 T oond o T
S KLEO).am) = o (8= (1=g"n) +775r). @D
Therefore, the sleep-phase can be rewritten as,
a , 0
Tyl =T¢ — ES?E_TKL(P(&H),Q(T&)] (22)
0
stp1 =8 — (1 — ﬁ](sf)meL(P(eeﬂ]: a(me)). (23)

These are also a gradient flow, but because of the asymmetricity of K-L divergence, (22),
(23) are different from the on-line version of the m-step. This is the essential difference
between the EM and W-S algorithms. Therefore, we cannot prove the convergence of the
W-S algorithm based on the similarity of these two algorithms[7].

Figure 2: The Wake-Sleep algorithm

5 CONVERGENCE PROPERTY

We want to prove the convergence property of the W-S algorithm. If we can find a Lyapnov
function for the W-S algorithm, the convergence is guaranteed[7]. But we couldn’t find it.
Instead of finding a Lyapnov function, we take the continuous time, and see the behavior
of the parameters and K-L divergence, K L(q(n:), p(6;)).

KL(q(n),p(8)) is a function of g, 7, £ and s>. The derivatives with respect to g and ¥
are given in (16) and (17). The derivatives with respect to 7 and s? are,

-1
D KL(gm),p(0) = 21+gTEg)C (r —5—9—) (24)

or _1+gTX'_1g
: P |
S KLam.p@) = 1+9757'g - . @5)
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On the other hand, we set the flows of g, 7, £ and s to follow the updating due to the W-S
algorithm, that is,

d _ 10 a2 P Cry
7Y = (st + 13 Cry) (g: o r;‘"C‘rt) (26)
d ' ‘5 ( T gt )
—r = —d(Z+ - 27
dtr a { t T gt9; ) Tt 1+ gg-z.t_.lgt (27)
d ; ,
75 = B (Zi-diag(C-20rg™ + (s; +r{Cri)agi))  (28)
d
=) = B (si = (1 =gl r)* +7{ Zure)) (29)

With theses results, dK L(q(n;), p(6:))/dt is,

dKL(q(n:),p(6:)) _ 0KLdg aKLd_r+6KLg KL d(s?)
dt =g dt T or &t ' 9% 4t ') dt

First 3 terms in the right side of (30) are apparently non-positive. Only the 4th one is not
clear.

KL d(s?)
d(s2) dt

(30)

_ 1
=~ (st = (= gTr? +775n) (1+ 07 50— 5 )

t
1+9/57'gt o T i\Z i T (2 1 )
= (s —((L—g; 1¢)“ +7; Zyr §f — ——— | .
8? ( t (( gt f} t t f)) t 1+g;r)__‘,t_1gt
The K L(q(n;), p(6:)) does not decrease when s? stays between ((1 — g7 )% + rf Zyry)
and 1/(1 + g7 X; ' g4), but if the following equation holds, these two are equivalent,
__S'e
1+97 % g

From the above results, the flows of g, 7 and £ decrease K L(g(n¢), p(6;)) at any time. s?

convergeto ((1—gXr:)2+rI Zyr;) but it does not always decrease K L(q(n;), p(6¢)). But
since 7 does converge to satisfy (31) independently of s?, finally s? converges to 1/(1 +

9l 7 ).

T (3D

6 DISCUSSION

This factor analysis model has a special property that p(y|z; @) and ¢(y|x; n) are equivalent
when following conditions are satisfied[7],
o Y-1lg Em 1
~1+gTxZ g’ T 1+gTx g

From this property, minimizing K L(p(8),q(n)) and K L(q(n),p(68)) with respect to 5
leads to the same point.

(32)

_ p(x; 0) p(ylz; 0)
KL{p{G), Q(n)) —‘Ep{m;ﬂ) [lOg q(:l:} ] + Ep[y,m;ﬂ} [IOg m] (33)
KL(q(n),p(8)) =Eq() [log p?i:;)] + Eyy,2m) [IOg ff(—g:zi—g] ; (34)

both of (33) and (34) include 1 only in the second term of the right side. If (32) holds,
those two terms are 0. Therefore K L(p(8),q(n)) and K L(q(n), p(#)) are minimized at
the same point.






