Graphical Models for Recognizing
Human Interactions

Nuria M. Oliver, Barbara Rosario and Alex Pentland
20 Ames Street, E15-384C,
Media Arts and Sciences Laboratory, MIT
Cambridge, MA 02139
{nuria, rosario, sandy }@media.mit.edu

Abstract

We describe a real-time computer vision and machine learning sys-
tem for modeling and recognizing human actions and interactions.
Two different domains are explored: recognition of two-handed
motions in the martial art 'Ta1 Chi’, and multiple-person interac-
tions in a visual surveillance task. Our system combines top-down
with bottom-up information using a feedback loop, and is formu-
lated with a Bayesian framework. Two different graphical models
(HMMs and Coupled HMMs) are used for modeling both individual
actions and multiple-agent interactions, and CHMMs are shown to
work more efficiently and accurately for a given amount of train-
ing. Finally, to overcome the limited amounts of training data,
we demonstrate that ‘synthetic agents’ (Alife-style agents) can be
used to develop flexible prior models of the person-to-person inter-
actions.

1 INTRODUCTION

We describe a real-time computer vision and machine learning system for modeling
and recognizing human behaviors in two different scenarios: (1) complex, two-
handed action recognition in the martial art of Ta: Chi and (2) detection and
recognition of individual human behaviors and multiple-person interactions in a
visual surveillance task. In the latter case, the system is particularly concerned
with detecting when interactions between people occur, and classifying them.

Graphical models, such as Hidden Markov Models (HMMs) [6] and Coupled Hid-
den Markov Models (CHMMs) [3, 2], seem appropriate for modeling and classify-
ing human behaviors because they offer dynamic time warping, a well- understood
training algorithm, and a clear Bayesian semantics for both individual (HMMs)
and interacting or coupled (CHMMs) generative processes. A major problem with
this data-driven statistical approach, especially when modeling rare or anomalous
behaviors, is the limited number of training examples. A major emphasis of our
work, therefore, is on efficient Bayesian integration of both prior knowledge with
evidence from data. We will show that for situations involving multiple indepen-
dent (or partially independent) agents the Coupled HMM approach generates much
better results than traditional HMM methods.

In addition, we have developed a synthetic agent or Alife modeling environment for
building and training flexible a priori models of various behaviors using software
agents. Simulation with these software agents yields synthetic data that can be
used to train prior models. These prior models can then be used recursively in a
Bayesian framework to fit real behavioral data.
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This synthetic agent approach is a straightforward and flexible method for devel-
oping prior models, one that does not require strong analytical assumptions to be
made about the form of the priors'. In addition, it has allowed us to develop ro-
bust models even when there are only a few examples of some target behaviors. In
our experiments we have found that by combining such synthetic priors with lim-
ited real data we can easily achieve very high accuracies at recognition of different
human-to-human interactions.

The paper is structured as follows: section 2 presents an overview of the system,
the statistical models used for behavior modeling and recognition are described in
section 3. Section 4 contains experimental results in two different real situations.
Finally section 5 summarizes the main conclusions and our future lines of research.

2 VISUAL INPUT

We have experimented using two different types of visual input. The first is a real-
time, self-calibrating 3-D stereo blob tracker (used for the Tai Chi scenario) [l}, and
the second is a real-time blob-tracking system [59 (used in the visual surveillance
task). In both cases an Extended Kalman filter (EKF) tracks the blobs’ location,
coarse shape, color pattern, and velocity. This information is represented as a
low-dimensional, parametric probability distribution function (PDF) composed of
a mixture of Gaussians, whose parameters (sufficient statistics and mixing weights
for each of the components) are estimated using Expectation Maximization (EM).

This visual input module detects and tracks moving objects — body parts in Taz
Chi and pedestrians in the visual surveillance task — and outputs a feature vector
describing their motion, heading, and spatial relationship to all nearby moving
objects. These output feature vectors constitute the temporally ordered stream
of data input to our stochastic state-based behavior models. Both HMMs and
CHMMs, with varying structures depending on the complexity of the behavior, are
used for classifying the observed behaviors.

Both top-down and bottom-up flows of information are continuously managed and
combined for each moving object within the scene. The Bayesian graphical models
offer a mathematical framework for combining the observations (bottom-up) with
complex behavioral priors (top-down) to provide expectations that will be fed back
to the input visual system.

3 VISUAL UNDERSTANDING VIA GRAPHICAL
MODELS: HMMs and CHMMs

Statistical directed acyclic graphs (DAGs) or probabilistic inference networks (PINs
hereafter) can provide a computationally efficient solution to the problem of time
series analysis and modeling. HMMs and some of their extensions, in particular
CHMMs, can be viewed as a particular and simple case of temporal PIN or DAG.
Graphically Markov Models are often depicted 'rolled-out in time’ as Probabilistic
Inference Networks, such as in figure 1. PINs present important advantages that are
relevant to our problem: they can handle incomplete data as well as uncertainty;
they are trainable and easier to avoid overfitting; they encode causality in a natural
way; there are algorithms for both doing prediction and probabilistic inference;
they offer a framework for combining prior knowledge and data; and finally they
are modular and parallelizable.

Traditional HMMs offer a probabilistic framework for modeling processes that have
structure in time. They offer clear Bayesian semantics, efficient algorithms for state
and parameter estimation, and they automatically perform dynamic time warping.
An HMM is essentially a quantization of a system’s configuration space into a
small number of discrete states, together with probabilities for transitions between

'Note that our priors have the same form as our posteriors, namely, they are graphical
models.
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Hidden Markov Model

Figure 1: Graphical representation of a HMM and a CHMM rolled-out in time

states. A single finite discrete variable indexes the current state of the system. Any
information about the history of the process needed for future inferences must be
reflected in the current value of this state variable.

However many interesting real-life problems are composed of multiple interacting
processes, and thus merit a compositional representation of two or more variables.
This is typically the case for systems that have structure both in time and space.
With a single state variable, Markov models are ill-suited to these problems. In
order to model these interactions a more complex architecture is needed.

Extensions to the basic Markov model generally increase the memory of the sys-
tem (durational modeling), providing it with compositional state in time. We are
interested in systems that have compositional state in space, e.g., more than one
simultaneous state variable. It is well known that the exact solution of extensions
of the basic HMM to 3 or more chains is intractable. In those cases approximation
techniques are needed ([7, 4, 8, 9]). However, it is also known that there exists an
exact solution for the case of 2 interacting chains, as it is our case [7, 2].

We therefore use two Coupled Hidden Markov Models (CHMMs) for modeling two
interacting processes, whether they are separate body parts or individual humans.
In this architecture state chains are coupled via matrices of conditional probabilities
modeling causal (temporal) influences between their hidden state variables. The
graphical representation of CHMMs is shown in figure 1. From the graph it can be
seen that for each chain, the state at time ¢ depends on the state at time ¢ — 1 in
both chains. The influence of one chain on the other is through a causal link.

In this paper we compare performance of HMMs and CHMMs for maximum a
posteriori (MAP) state estimation. We compute the most likely sequence of states
S within a model given the observation sequence O = {oy,...,0,}. This most likely
sequence is obtained by S = argmazs P(S|0).

In the case of HMMs the posterior state sequence probability P(S|O) is given by

T
P(S|0) = Pu,psy(01) [ ] Pas(00) Peypss (1)
t=2
where S = {a1,...,an} is the set of discrete states, s; € S corresponds to the

state at time 1. P;|; = Pyias1-1=a, 18 the state-to-state transition probability (i.e.
probability of being in state a; at time ¢ given that the system was in state a; at
time t — 1). In the following we will write them as P,,,,_,. P; = Py,=q, = P, are
the prior probabilities for the initial state. Finally p;i(o:) = ps,=a,(0t) = ps,(01) are
the output probabilities for each state?.

For CHMMs we need to introduce another set of probabilities, PJ:ISL,! which cor-

>The output probability is the probability of observing o, given state a, at time ¢
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respond to the probability of state s; at time ¢ in one chain given that the other
chain —denoted hereafter by superscript ’ — was in state sj_, at time ¢t — 1. These
new probabilities express the causal influence (coupling) of one chain to the other.
The posterior state probability for CHMMs is expressed as

P,lp_,l(O'l)P,'p,;(O’) o
P(SIO) = P(O)l : % ]_—_[PS:[31—1P3:|3:_1P.1;|3,_1 Ps.]s;_,pa.(ot)ps‘;(oi)

=2
(2)
where sy, 5; 01, 0, denote states and observations for each of the Markov chains that
compose the CHMMs.

In [2] a deterministic approximation for maximum a posterior (MAP) state esti-
mation is introduced. It enables fast classification and parameter estimation via
EM, and also obtains an upper bound on the cross entropy with the full (combi-
natoric) posterior which can be minimized using a subspace that is linear in the
number of state variables. An “N-heads” dynamic programming algorithm samples
from the O(NV) highest probability paths through a compacted state trellis, with
complexity O(T(CN)?) for C chains of N states apiece observing 7' data points.
The cartesian product equivalent HMM would involve a combinatoric number of

states, typically requiring O(TN*€) computations. We are particularly interested
in efficient, compact algorithms that can perform in real-time.

4 EXPERIMENTAL RESULTS

Our first experiment is with a version of Tai Chi Ch'uan (a Chinese martial and
meditative art) that is practiced while sitting. Using our self-calibrating, 3-D stereo
blob tracker [1], we obtained 3D hand tracking data for three Tai Chi gestures in-
volving two, semi-independent arm motions: the left single whip, the left cobra, and
the left brush knee. Figure 4 illustrates one of the gestures and the blob-tracking.
A detailed description of this set of Ta: Chi experimental results can be found in [3]
and viewed at http://nuria.www.media.mit.edu/ " nuria/chmm/taichi.html.

Figure 2: Selected frames from ‘left brush knee.’

We collected 52 sequences, roughly 17 of each gesture and created a feature vector
consisting of the 3-D (z, y, z) centroid (mean position) of each of the blobs that char-
acterize the hands. The resulting six-dimensional time series was used for training
both HMMs and CHMMs.

We used the best trained HMMs and CHMMs — using 10-crossvalidation — to
classify the full data set of 52 gestures. The Viterbi algorithm was used to find the
maximum likelihood model for HMMs and CHM Ms. Two-thirds of the testing data
had not been seen in training, including gestures performed at varying speeds and
from slightly different views. It can be seen from the classification accuracies, shown
in table 1, that the CHMMs outperform the HMMs. This difference is not due to
intrinsic modeling power, however; from earlier experiments we know that when a
large number of training samples is available then HMMs can reach similar accu-
racies. We conclude thus that for data where there are two partially-independent
processes (e.g., coordinated but not exactly linked), the CHMM method requires
much less training to achieve a high classification accuracy.

Table 1 illustrates the source of this training advantage. The numbers between












