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ABSTRACT 
A new learning algorithm for the storage of static 
and periodic attractors in biologically inspired 
recurrent analog neural networks is introduced. 
For a network of n nodes, n static or n/2 periodic 
attractors may be stored. The algorithm allows 
programming of the network vector field indepen­
dent of the patterns to be stored. Stability of 
patterns, basin geometry, and rates of convergence 
may be controlled. For orthonormal patterns, the 
l~grning operation reduces to a kind of periodic 
outer product rule that allows local, additive, 
commutative, incremental learning. Standing or 
traveling wave cycles may be stored to mimic the 
kind of oscillating spatial patterns that appear 
in the neural activity of the olfactory bulb and 
prepyriform cortex during inspiration and suffice, 
in the bulb, to predict the pattern recognition 
behavior of rabbits in classical conditioning ex­
periments. These attractors arise, during simulat­
ed inspiration, through a multiple Hopf bifurca­
tion, which can act as a critical "decision pOint" 
for their selection by a very small input pattern. 

INTRODUCTION 
This approach allows the construction of biological models and 
the exploration of engineering or cognitive networks that 
employ the type of dynamics found in the brain. Patterns of 40 
to 80 hz oscillation have been observed in the large scale ac­
tivity of the olfactory bulb and cortex(Freeman and Baird 86) 
and even visual neocortex(Freeman 87,Grey and Singer 88), and 
found to predict the olfactory and visual pattern recognition 
responses of a trained animal. Here we use analytic methods of 
bifurcation theory to design algorithms for determining synap­
tic weights in recurrent network architectures, like those 
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found in olfactory cortex, for associative memory storage of 
these kinds of dynamic patterns. 

The "projection algorithm" introduced here employs higher 
order correlations, and is the most analytically transparent 
of the algorithms to come from the bifurcation theory ap­
proach(Baird 88). Alternative numerical algorithms employing 
unused capacity or hidden units instead of higher order corr­
elations are discussed in (Baird 89). All of these methods 
provide solutions to the problem of storing exact analog at­
tractors, static or dynamic, in recurrent neural networks, and 
allow programming of the ambient vector field independent of 
the patterns to be stored. The stability of cycles or equi­
libria, geometry of basins of attraction, rates of convergence 
to attractors, and the location in parameter space of primary 
and secondary bifurcations can be programmed in a prototype 
vector field - the normal form. 

To store cycles by the projection algorithm, we start with the 
amplitude equations of a polar coordinate normal form, with 
coupling coefficients chosen to give stable fixed points on 
the axes, and transform to Cartesian coordinates. The axes of 
this system of nonlinear ordinary differential equations are 
then linearly transformed into desired spatial or spatio-tem­
poral patterns by projecting the system into network coordina­
tes - the standard basis - using the desired vectors as colum­
ns of the transformation matrix. This method of network syn­
thesis is roughly the inverse of the usual procedure in bifur­
cation theory for analysis of a given physical system. 

Proper choice of normal form couplings will ensure that the 
axis attractors are the only attractors in the system - there 
are no "spurious attractors". If symmetric normal form coef­
ficients are chosen, then the normal form becomes a gradient 
vector field. It is exactly the gradient of an explicit poten­
tial function which is therefore a strict Liapunov function 
for the system. Identical normal form coefficients make the 
normal form vector field equivariant under permutation of the 
axes, which forces identical scale and rotation invariant 
basins of attraction bounded by hyperplanes. Very complex 
periodic a~tractors may be established by a kind of Fourier 
synthesis as linear combinations of the simple cycles chosen 
for a subset of the axes, when those are programmed to be 
unstable, and a single "mixed mode" in the interior of that 
subspace is made stable. Proofs and details on vectorfield 
programming appear in (Baird 89). 

In the general case, the network resulting from the projection 
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algorithm has fourth order correlations, but the use of restr­
ictions on the detail of vector field programming and the 
types of patterns to be stored result in network architectures 
requiring only s~cond order correlations. For biological mod­
eling, where possibly the patterns to be stored are sparse and 
nearly orthogonal, the learning rule for periodic patterns 
becomes a "periodic" outer product rule which is local, add­
itive, commutative, and incremental. It reduces to the usual 
Hebb-like rule for static attractors. 

CYCLES 
The observed physiological activity may be idealized mathe-

t . 11 "1 " 1 (ej + wt) • 1 2 S h ma 1ca y as a cyc e , r Xj e , J- , , ... ,n. uc a 
cycle is ~ "periodic attractor" if it is stable. The global 
amplitude r is just a scaling factor for the pattern ~ , and 
the global phase w in e1wt is a periodic scaling that scales x 
by a factor between ± 1 at frequency w as t varies. 

The same vector XS or "pattern" of relative amplitudes can 
appear in space as a standing wave, like that seen in the 
bulb, if the relative phase eS1 of each compartment (component) 
is the same, eS1+, - eS1 , or as a traveling wave, like that seen 
in the ~repyriform cortex. if the relative phase components of 
~s form a gradient in space, eS 1+1 - 1/a e\. The traveling wave 
will "sweep out" the amplitude pattern XS in time, but the 
root-mean-square amplitude measured in an experiment will be 
the same ~s, regardless of the phase pattern. For an arbitrary 
phase vector, t~~se "simple" single frequency cycles can make 
very complicated looking spatio-temporal patterns. From the 
mathematical point of view, the relative phase pattern ~ is a 
degree of freedom in the kind patterns that can be stored. 
Patterns of uniform amplitude ~ which differed only in the 
phase locking pattern ~ could be stored as well. 

To store the kind of patterns seen in bulb, the amplitude 
vector ~ is assumed to be parsed into equal numbers of excita­
tory and inhibitory components, where each class of component 
has identical phase. but there is a phase difference of 60 -
90 degrees between the classes. The traveling wave in the 
prepyriform cortex is modeled by introducing an additional 
phase g~adient into both excitatory and inhibitory classes. 

PROJECTION ALGORITHM 
The central result of this paper is most compactly stated as 
the following: 
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THEOREM 
Any set S, s - 1,2, ... , n/2 , of cycles r S x.s e1(9js + wst) of 
linearly independent vectors of relative comJonent amplitudes 
xS E Rn and phases ~s E Sn, with frequencies wS E R and global 
amplitudes r S E R, may be established in the vector field of 
the analog fourth order network: 

by some variant of the projection operation : 

-1 Tij ... Emn Pim J mn P nj , T EPA p-1. p-1 p-1 
ijk1· mn im mn mJ nk n1' 

where the n x n matrix P contains the real and imaginary com­
ponents [~S cos ~s , ~s sin ~S] of the complex eigenvectors 
xS e 19s as columns, J is an n x n matrix of complex conjugate 
eigenvalues in diagonal blocks, Amn is an n x n matrix of 2x2 
blocks of repeated coefficients of the normal form equations, 
and the input bi &(t) is a delta function in time that establ­
ishes an initial condition. The vector field of the dynamics 
of the global amplitudes rs and phases -s is then given exactly 
by the normal form equations : 

r s == Us r s 

In particular, for ask > 0 , and ass/akS < 1 , for all sand k, 
the cycles s - 1,2, ... ,n/2 are stable, and have amplitudes 
rs ;; (us/ass )1I2, where us· 1 - "T • 

Note that there is a multiple Hopf bifurcation of codimension 
n/2 at "T = 1. Since there are no approximations here, however, 
the theorem is not restricted to the neighborhood of this 
bifurcation, and can be discussed without further reference to 
bifurcation theory. The normal form equations for drs/dt and 
d_s/dt determine how r S and _s for pattern s evolve in time in 
interaction with all the other patterns of the set S. This 
could be thought of as the process of phase locking of the 
pattern that finally emerges. The unusual power of this al­
gorithm lies in the ability to precisely specify these ~ 
linear interactions. In general, determination of the modes of 
the linearized system alone (li and Hopfield 89) is insuf­
ficient to say what the attractors of the nonlinear system 
will be. 
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PROOF 
The proof of the theorem is instructive since it is a constru­
ctive proof, and we can use it to explain the learning algori­
thm. We proceed by showing first that there are always fixed 
points on the axes of these amplitude equations, whose stabil­
ity is given by the coefficients of the nonlinear terms. Then 
the network above is constructed from these equations by two 
coordinate transformations. The first is from polar to Car­
tesian coordinates, and the second is a linear transformation 
from these canonical "mode" coordinates into the standard 
basis e1, e2, ... , eN' or "network coordinates". This second 
transformation constitutes the "learning algorithm", because 
it tra"nSfrirms the simple fixed points of the amplitude equa­
tions into the specific spatio-temporal memory patterns desi­
red for the network. 

Amplitude Fixed Points 
Because the amplitude equations are independent of the rota­
tion _, the fixed points of the amplitude equations charact­
erize the asymptotic states of the underlying oscillatory 
modes. The stability of these cycles is therefore given by the 
stability of the fixed points of the amplitude equations. On 
each axis r s' the other components rj are zero, by definition, 

rj = rj ( uj - Ek ajk r k2 ) • 0, for rj • 0, which leaves 

r s - rs ( Us - ass r s 2 ), and r s - 0 

There is an equilibrium on each axis s, at r s.(us/ass)1I2, as 
claimed. Now the Jacobian of the amplitude equations at some 
fixed point �r�~� has elements 

J . . - - 2 a .. �r�~�.� r..... , J11 = u. - :5 a .. �r�~�.�2� - �~� a .. �r�~�.�2� . 
lJ lJ 1 J 1 11 1 ]7-i lJ J 

For a fixed point �r�~�s� on axis s, Jij • 0 , since �r�~�i� or �r�~�j� • 0, 
making J a diagonal matrix whose entries are therefore its 
eigenvalues. Now Jl1 • u1 - ais �r�~� s 2, for i /. s, and Jss • Us -
:5 ass �r�~�/�.� Since �r�~�/� • us/ass' Jss • - 2 us' and Jii • ui - ais 
(us/ass). This gives aisfass > u1/us as the condition for nega­
tive eigenvalues that assures the stability of r .... s. Choice of 
aji/aii ) uj/ui , for all i, j , therefore guarantees stability of 
all axis fixed points. 

Coordinate Transformations 
We now construct the neural network from these well behaved 
equations by the following transformations, 
First; polar to Cartesian, (rs'-s) to (v2s-1.v2s) : Using 
V 2s-1 '" r s cos -s v2s = r s sin -s ,and differentiating these 










