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Abstract

We develop a refined mean field approximation for inference and
learning in probabilistic neural networks. Our mean field theory,
unlike most, does not assume that the units behave as independent
degrees of freedom; instead, it exploits in a principled way the
existence of large substructures that are computationally tractable.
To illustrate the advantages of this framework, we show how to
incorporate weak higher order interactions into a first-order hidden
Markov model, treating the corrections (but not the first order
structure) within mean field theory.

1 INTRODUCTION

Learning the parameters in a probabilistic neural network may be viewed as a
problem in statistical estimation. In networks with sparse connectivity (e.g. trees
and chains), there exist efficient algorithms for the exact probabilistic calculations
that support inference and learning. In general, however, these calculations are
intractable, and approximations are required.

Mean field theory provides a framework for approximation in probabilistic neural
networks (Peterson & Anderson, 1987). Most applications of mean field theory,
however, have made a rather drastic probabilistic assumption—namely, that the
units in the network behave as independent degrees of freedom. In this paper we
show how to go beyond this assumption. We describe a self-consistent approxi-
mation in which tractable substructures are handled by exact computations and
only the remaining, intractable parts of the network are handled within mean field
theory. For simplicity we focus on networks with binary units; the extension to
discrete-valued (Potts) units is straightforward.
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We apply these ideas to hidden Markov modeling (Rabiner & Juang, 1991). The
first order probabilistic structure of hidden Markov models (HMMSs) leads to net-
works with chained architectures for which efficient, exact algorithms are available.
More elaborate networks are obtained by introducing couplings between multiple
HMMs (Williams & Hinton, 1990) and/or long-range couplings within a single HMM
(Stolorz, 1994). Both sorts of extensions have interesting applications; in speech,
for example, multiple HMMs can provide a distributed representation of the artic-
ulatory state, while long-range couplings can model the effects of coarticulation. In
general, however, such extensions lead to networks for which exact probabilistic cal-
culations are not feasible. One would like to develop a mean field approximation for
these networks that exploits the tractability of first-order HMMs. This is possible
within the more sophisticated mean field theory described here.

2 MEAN FIELD THEORY

We briefly review the basic methodology of mean field theory for networks of binary
(£1) stochastic units (Parisi, 1988). For each configuration {S} = {51, 53,...,Sn},
we define an energy E{S} and a probability P{S} via the Boltzmann distribution:

e—PE{S}
P{S}=—Fn, M

where (3 is the inverse temperature and Z is the partition function. When it is
intractable to compute averages over P{S}, we are motivated to look for an ap-
proximating distribution @{S}. Mean field theory posits a particular parametrized
form for Q{S}, then chooses parameters to minimize the Kullback-Liebler (KL)
divergence:

Q{S}
KL(Q|IP)= Y Q{S}In |22} 2
@R = 3-01(s) 42 ©)

Why are mean field approximations valuable for learning? Suppose that P{S}
represents the posterior distribution over hidden variables, as in the E-step of an
EM algorithm (Dempster, Laird, & Rubin, 1977). Then we obtain a mean field
approximation to this E-step by replacing the statistics of P{S} (which may be
quite difficult to compute) with those of Q{S} (which may be much simpler). If, in
addition, Z represents the likelihood of observed data (as is the case for the example
of section 3), then the mean field approximation yields a lower bound on the log-
likelihood. This can be seen by noting that for any approximating distribution
Q{S}, we can form the lower bound:

InZ = ane‘ﬁE{S} (3)
5}
o—BE{S}
_ m{XS;Q{S}. W] (4)
> > Q{S}-BE{S} -mQ{S}], (5)
)

where the last line follows from Jensen’s inequality. The difference between the left
and right-hand side of eq. (5) is exactly KL(Q|| P); thus the better the approximation
to P{S}, the tighter the bound on In Z. Once a lower bound is available, a learning
procedure can maximize the lower bound. This is useful when the true likelihood
itself cannot be efficiently computed.
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2.1 Complete Factorizability

The simplest mean field theory involves assuming marginal independence for the
units S;. Consider, for example, a quadratic energy function

— BE{S} =) Ji;5:5; +Zh Si, (6)
i<y
and the factorized approximation:

ey =TI (F5%). M

The expectations under this mean ﬁeld approximation are (S;) = m; and (S Sj) =
m;m; for i # j. The best approximation of this form is found by minimizing the
KL-divergence,

ki) = 3 [(5F)m (R5%) + ((5) e (55)] @

i
- ZJ.Jm‘m_, Zh,m, +InZ,
1<j
with respect to the mean field parameters m;. Setting the gradients of eq. (8) equal
to zero, we obtain the (classical) mean field equations:

tanh™(m;) = 3 Jijm; + hs. 9)
j

2.2 Partial Factorizability

We now consider a more structured model in which the network consists of interact-
ing modules that, taken in isolation, define tractable substructures. One example
of this would be a network of weakly coupled HMMs, in which each HMM, taken
by itself, defines a chain-like substructure that supports efficient probabilistic cal-
culations. We denote the interactions between these modules by parameters Kf_;”,
where the superscripts 4 and v range over modules and the subscripts 7 and j index
units within modules. An appropriate energy function for this network is:

~BE{S} =) <> Jkstst + Z hESE D+ KL SESY. (10)
M i<j u<y
ij
The first term in this energy function contains the intra-modular interactions; the
last term, the inter-modular ones.

We now consider a mean field approximation that maintains the first sum over
modules but dispenses with the inter-modular corrections:

Q{S} = Elgexp{z [ZJ:;s:‘suZH:‘s;‘” (11)

uo i)

The parameters of this mean field approximation are H/'; they will be chosen to
provide a self-consistent model of the inter-modular interactlons We easily obtain
the following expectations under the mean field approximation, where u # v:

(S7S5) = Ouw(SYSY) + (1= 6 )(SENSY), (12)
(SPSYSE) = Suw(SYSENST) + 6uu(SY SENSE) + (13)
(1= 8uw)(1 = 8w )(S)(S7 ) (SE)-
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Note that units in the same module are statistically correlated and that these cor-
relations are assumed to be taken into account in calculating the expectations. We
assume that an efficient algorithm is available for handling these intra-modular cor-
relations. For example, if the factorized modules are chains (e.g. obtained from
a coupled set of HMMs), then computing these expectations requires a forward-
backward pass through each chain.

The best approximation of the form, eq. (11), is found by minimizing the KL-
divergence,

KL(QIIP) =1n(Z/Zq) + Z(H” W) (SE) = D_KE(SES)),  (14)
<v
ns
with respect to the mean field parameters Hy'. To compute the appropriate gradi-
ents, we use the fact that derivatives of expectations under a Boltzmann distribu-
tion (e.g. d(S!')/OHY) yield cumulants (e.g. (S£'S¥) — (S¥)(S¢)). The conditions

for stationarity are then:

0= Z(H" RE)((SESY) — (SENSEN - KL [(SSYSY) — (SESY)(S¥)] - (15)
<y
ij

Substituting the expectations from egs. (12) and (13), we find that KL(Q||P) is
minimized when

o:z{ﬁr’—hzﬂ—zsz } SYSY) —(SENSEN.  (16)

v#w J

The resulting mean field equations are:

=YD KE(SY) + B (17)

vEw j

These equations may be solved by iteration, in which the (assumed) tractable algo-
rithms for averaging over Q{S} are invoked as subroutines to compute the expecta-
tions (SY) on the right hand side. Because these expectations depend on H/, these

quatlons may be viewed as a self-consistent model of the inter-modular mtera.c—
tions. Note that the mean field parameter H{’ plays a role analogous totanh™ (m,)
in eq. (9) of the fully factorized case.

2.3 Inducing Partial Factorizability

Many interesting networks do not have strictly modular architectures and can only
be approximately decomposed into tractable core structures. Techniques are needed
in such cases to induce partial factorizability. Suppose for example that we are given
an energy function

— BE{S} =Y _ J;;S:S; +Zh5’ + 3 KijSiS; (18)
i<j i<j

for which the first two terms represent tractable interactions and the last term,
intractable ones. Thus the weights J;; by themselves define a tractable skeleton
network, but the weights K;; spoil this tractability. Mimicking the steps of the
previous section, we obtain the mean field equations:

0= Z((SSk)—(S)(Sk)) = i) =) K [(SiSiSk) — (S:S;) (S (19)

i<j
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In this case, however, the weights K;; couple units in the same core structure. Be-
cause these units are not assumed to be independent, the triple correlator (S;S;Sk)
does not factorize, and we no longer obtain the decoupled update rules of eq. (17).
Rather, for these mean field equations, each iteration requires computing triple
correlators and solving a large set of coupled linear equations.

To avoid this heavy computational load, we instead manipulate the energy function
into one that can be partially factorized. This is done by introducing extra hidden
variables W;; = %1 on the intractable links of the network. In particular, consider
the energy function

—BE{S,W}=YJiSiSi+ Y mSi+ Y [KPS+ KPS| Wy (20)

i<j i i<j

The hidden variables W;; in eq. (20) serve to decouple the units connected by
the intractable weights K;;. However, we can always choose the new interactions,

K} and K}, so that

e~ PE{S} _ z e—BE{S,W} (21)
{w}
Eq. (21) states that the marginal distribution over {S} in the new network is iden-

tical to the joint distribution over {S} in the original one. Summing both sides of
eq. (21) over {S}, it follows that both networks have the same partition function.

The form of the energy function in eq. (20) suggests the mean field approximation:

1
Q{S,W}= % exp ZJ;_,-S.-S,- + ZHs'Si + ZHijWij ) (22)

i<j £ i<j

where the mean field parameters H; have been augmented by a set of additional
mean field parameters H;; that account for the extra hidden variables. In this
expression, the variables S; and Wj; act as decoupled degrees of freedom and the
methods of the preceding section can be applied directly. We consider an example
of this reduction in the following section.

3 EXAMPLE

Consider a continuous-output HMM in which the probability of an output )?t at
time ¢ is dependent not only on the state at time ¢, but also on the state at time
t + A. Such a context-sensitive HMM may serve as a flexible model of anticipatory
coarticulatory effects in speech, with A a~ 50ms representing a mean phoneme
lifetime. Incorporating these interactions into the basic HMM probability model,
we obtain the following joint probability on states and outputs:

L T-1 T-A 1
P{S,X} = H ASS141 H (gﬂ—DDexP{
t=1 t=1

Denoting the likelihood of an output sequence by Z, we have
Z=P{X}=)_ P{5X}. (24)
{5}

We can represent this probability model using energies rather than transition prob-
abilities (Luttrell, 1989; Saul and Jordan, 1995). For the special case of binary

~3 [Re= s, - VS,M]z} . (23)









