
Supplementary Material for “Probabilistic Matrix Factorization
for Automated Machine Learning”

ML / PP Algorithm Parameter Range
Polynomial Features degree [2, 3]
Polynomial Features interaction_only {False, True}
Polynomial Features include_bias {True, False}
Principal Component Analysis keep_variance [0.5, 0.9999]
Principal Component Analysis whiten {False, True}
Linear Discriminant Analysis shrinkage {None, auto, manual}
Linear Discriminant Analysis n_components [1, 250]
Linear Discriminant Analysis tol [1e-05, 0.1]
Linear Discriminant Analysis shrinkage_factor [0.0, 1.0]
Extreme Gradient Boosting max_depth [1, 10]
Extreme Gradient Boosting learning_rate [0.01, 1.0]
Extreme Gradient Boosting n_estimators [50, 500]
Extreme Gradient Boosting subsample [0.01, 1.0]
Extreme Gradient Boosting min_child_weight [1, 20]
Quadratic Discriminant Analysis reg_param [0.0, 10.0]
Extra Trees criterion {gini, entropy}
Extra Trees max_features [0.5, 5.0]
Extra Trees min_samples_split [2, 20]
Extra Trees min_samples_leaf [1, 20]
Extra Trees bootstrap {True, False}
Decision Tree criterion {gini, entropy}
Decision Tree max_depth [0.0, 2.0]
Decision Tree min_samples_split [2, 20]
Decision Tree min_samples_leaf [1, 20]
Gradient Boosted Decision Trees learning_rate [0.01, 1.0]
Gradient Boosted Decision Trees n_estimators [50, 500]
Gradient Boosted Decision Trees max_depth [1, 10]
Gradient Boosted Decision Trees min_samples_split [2, 20]
Gradient Boosted Decision Trees min_samples_leaf [1, 20]
Gradient Boosted Decision Trees subsample [0.01, 1.0]
Gradient Boosted Decision Trees max_features [0.5, 5.0]
K Neighbors n_neighbors [1, 100]
K Neighbors weights {uniform, distance}
K Neighbors p {1, 2}
Multinomial Naive Bayes alpha [0.01, 100.0]
Multinomial Naive Bayes fit_prior {True, False}
Support Vector Machine C [0.03125, 32768.0]
Support Vector Machine kernel {rbf, poly, sigmoid}
Support Vector Machine gamma [3.05176e-05, 8.0]
Support Vector Machine shrinking {True, False}
Support Vector Machine tol [1e-05, 0.1]
Support Vector Machine coef0 [-1.0, 1.0]
Support Vector Machine degree [1, 5]
Random Forest criterion {gini, entropy}
Random Forest max_features [0.5, 5.0]
Random Forest min_samples_split [2, 20]
Random Forest min_samples_leaf [1, 20]
Random Forest bootstrap {True, False}
Bernoulli Naive Bayes alpha [0.01, 100.0]
Bernoulli Naive Bayes fit_prior {True, False}

Table 1: List of preprocessing methods, ML models/algorithms and parameters considered.

1

1 Generation of training data

We found that some of the OpenML datasets are so easy to model, that most of the machine
learning pipelines we tried worked equally well. Since this could swamp any difference between the
different methods we were evaluating, we chose our test set taking into consideration the difficulty of
each dataset. We did so by randomly drawing without replacement each dataset with probabilities
proportional to how poorly random selection performed on it. Specifically, for each dataset, we ran
random search for 300 iterations and recorded the regret. The probability of selecting a dataset was
then proportional to the regret on that dataset, averaged over 100 trials of random selection. 100
datasets were selected for the test set of which 11 had been used to train auto-sklearn. Moving these
11 from test to train resulted in a training set consisting of 464 datasets. The following is the list of
OpenML dataset IDs used to train the proposed method in the main paper:

[3, 6, 10, 11, 12, 14, 16, 18, 20, 21, 22, 26, 28, 30, 31, 32, 36, 39, 41,
43, 44, 46, 50, 54, 59, 60, 61, 62, 151, 155, 161, 162, 164, 180, 181, 182,
183, 184, 187, 189, 209, 223, 225, 227, 230, 275, 277, 287, 292, 294, 298,
300, 307, 310, 312, 313, 329, 333, 334, 335, 336, 338, 339, 343, 346, 375,
377, 383, 385, 386, 387, 389, 391, 392, 395, 400, 401, 444, 446, 448, 450,
457, 458, 461, 462, 463, 464, 465, 467, 468, 469, 472, 476, 477, 478, 479,
480, 679, 682, 685, 694, 713, 715, 716, 717, 718, 719, 720, 721, 722, 723,
725, 727, 728, 729, 730, 732, 734, 735, 737, 741, 742, 743, 744, 745, 746,
747, 748, 749, 751, 752, 754, 755, 756, 758, 759, 761, 762, 765, 766, 767,
768, 769, 770, 772, 775, 776, 777, 778, 779, 780, 782, 784, 785, 787, 788,
790, 791, 792, 793, 794, 795, 796, 797, 801, 803, 804, 805, 807, 808, 811,
813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 827, 828, 829, 830,
832, 833, 834, 835, 837, 841, 843, 845, 846, 847, 848, 849, 850, 853, 855,
857, 859, 860, 863, 864, 865, 866, 867, 868, 870, 871, 872, 873, 874, 875,
877, 878, 879, 880, 881, 882, 884, 885, 886, 889, 890, 892, 894, 895, 900,
901, 903, 905, 910, 912, 913, 914, 915, 916, 917, 919, 921, 922, 923, 924,
925, 928, 932, 933, 934, 935, 936, 937, 938, 941, 942, 943, 946, 947, 950,
951, 952, 953, 954, 955, 956, 958, 959, 962, 964, 965, 969, 970, 971, 973,
974, 976, 977, 978, 979, 980, 983, 987, 988, 991, 994, 995, 997, 1004, 1005,
1006, 1009, 1011, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1025,
1026, 1038, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1055, 1056, 1059,
1060, 1061, 1062, 1063, 1064, 1065, 1066, 1068, 1069, 1075, 1079, 1081,
1082, 1104, 1106, 1107, 1115, 1116, 1120, 1121, 1122, 1123, 1124, 1125,
1126, 1127, 1129, 1131, 1132, 1133, 1135, 1136, 1137, 1140, 1141, 1143,
1144, 1145, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156,
1157, 1158, 1160, 1162, 1163, 1165, 1167, 1169, 1217, 1236, 1237, 1238,
1413, 1441, 1442, 1443, 1444, 1446, 1448, 1449, 1450, 1451, 1452, 1454,
1455, 1457, 1459, 1460, 1464, 1467, 1471, 1475, 1481, 1482, 1486, 1488,
1489, 1496, 1498, 1500, 1501, 1505, 1507, 1508, 1509, 1510, 1516, 1517,
1519, 1520, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536,
1537, 1538, 1539, 1540, 1541, 1542, 1544, 1545, 1546, 1556, 1557, 1561,
1562, 1563, 1564, 1565, 1567, 1568, 1569, 4134, 4135, 4153, 4340, 4534,
4538, 40474, 40475, 40476, 40477, 40478, 1050, 1067, 740, 398, 23, 1036,
1049, 799, 822, 904, 806]

With respect to the selected held-out test set, auto-sklearn failed to complete 200 iterations on
the OpenML datasets with IDs [8, 197, 279, and 1472], and the fmlp failed on the OpenML
dataset with ID 887. After filtering these datasets, the final test set contained 84 OpenML datasets
with the IDs:

[733, 812, 731, 929, 1600, 475, 726, 197, 394, 1472, 1159, 763, 1483, 1080,
836, 851, 911, 459, 37, 927, 887, 783, 1012, 764, 714, 285, 1117, 384, 888,
1447, 1100, 789, 48, 1054, 1164, 838, 869, 931, 876, 1073, 1071, 750, 1518,
948, 736, 896, 1503, 278, 279, 908, 724, 996, 891, 926, 337, 909, 826, 800,
1487, 1512, 945, 825, 949, 753, 774, 906, 902, 1473, 8, 862, 920, 1078, 683,

2

1084, 1412, 53, 276, 1543, 907, 397, 918, 771, 773, 1077, 1453, 893, 1513,
388]

2 Unsupervised learning capability

On a finer scale, the latent space can also capture different settings of an individual hyperparameter.
After training, we plotted the latent embeddings for pipelines using PCA as a pre-processor in
Figure 1, where each pipeline is embedded in a 2-dimensional space and colored by the value of the
hyperparameter of interest, in this case the percent of variance retained by a PCA preprocessor. We
stress that this learning capability is completely unsupervised.

Figure 1: Latent embedding of all the pipelines in which PCA is included as a pre-processor. Each
point is colored according to the percentage of variance retained by PCA (i.e. the hyperparameter of
interest when tuning PCA in ML pipelines).

3 Pipeline evaluation and uncertainty

We investigated how quickly our model is able to improve its predictions as more pipelines are
evaluated. Figure 2a shows the mean squared error computed across the test datasets as a function of
the number of evaluations. As expected the error monotonically decreases and appears to asymptote
after 200 iterations. Figure 2b shows the uncertainty of the model (specifically, the posterior variance)
as a function of the number of evaluations. Overall, Figure 2 a and b support that as more evaluations
are performed, the model becomes less uncertain and the accuracy of the predictions increases.

3

0 50 100 150 200 250 300
Pipelines evaluated

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Sq
ua

re
d

er
ro

r (
m

ea
n

±
2

SE
)

(a)

0 50 100 150 200 250 300
Pipelines evaluated

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
ria

nc
e

(m
ea

n
±

2
SE

)

(b)

Figure 2: (a) Mean squared error (MSE) between predicted and observed balanced accuracies in the
test set as a function of the number of iterations. Lower is better. MSE is averaged across all test
datasets. (b) Posterior predictive variance as a function of the number of iterations and averaged
across all test datasets. Shaded area shows two standard errors around the mean.

4 Additional sparsity experiment

As an additional experiment, we trained the proposed method on 93 of the datasets used to train
auto-sklearn and an additional 47 datasets selected uniformly at random from the training set of the
main paper. The model and training parameters were 20 latent dimensions and a learning rate of
10−5. The evaluation was performed on the same held out test set. Figure 3 shows the outcome of
this experiment and demonstrate that our method still outperforms auto-sklearn. For this experiment,
the list of OpenML dataset IDs used to train our method was

[3, 6, 12, 14, 16, 18, 21, 22, 26, 28, 30, 31, 32, 36, 44, 46, 60, 180, 181,
182, 184, 300, 389, 391, 392, 395, 401, 679, 715, 718, 720, 722, 723, 727,
728, 734, 735, 737, 741, 743, 751, 752, 761, 772, 797, 803, 807, 813, 816,
819, 821, 823, 833, 837, 843, 845, 846, 847, 849, 866, 871, 881, 901, 903,
910, 912, 913, 914, 917, 923, 934, 953, 958, 959, 962, 971, 976, 977, 978,
979, 980, 991, 995, 1019, 1020, 1021, 1040, 1041, 1056, 1068, 1069, 1116,
1120, 310, 1132, 685, 824, 1015, 1541, 50, 890, 1014, 1446, 747, 875, 1459,
721, 900, 878, 1236, 40478, 1562, 1079, 1496, 1449, 988, 796, 162, 811,
1145, 776, 457, 476, 1482, 1529, 1127, 952, 740, 1043, 1546, 4135, 1022,
853, 1237, 758, 827, 814, 450, 155, 462]

5 Including pipeline meta-data

Here, we include pipeline meta-data consisting of which pre-processor and model is used within
each pipeline. The information is one-hot encoded and supplied via a linear mean function whose
weights are learned during training. Figure 4 shows that including this information didn’t improve
performance in the case of the 80% observed matrix. However, we believe meta-data can be more
beneficial for higher sparsity levels.

6 Increasing sparsity level, altering training update rule, and more
iterations

Here, we include additional results from (i) further increasing the level of sparsity to a 0.5% observed
performance matrix, (ii) utilizing Adam with learning rate 10−2 to train in the 80%-observed case,
and (iii) letting methods run to 1000 total iterations. The sparsity level of 0.5% was achieved by
dropping 79.5% of all observations uniformly at random. For training, we utilized Adam with
learning rate 10−2 and a latent dimensionality of Q = 2. Warm-starting could not be used since

4

0 25 50 75 100 125 150 175 200

Iterations

2.0

2.5

3.0

3.5

4.0

R
a
n

k
(m

ea
n
±

S
E

)

random

auto-sklearn

random2x

random4x

PMF

0 25 50 75 100 125 150 175 200

Iterations

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
eg

re
t

(m
ea

n
±

S
E

)

random

auto-sklearn

random2x

random4x

PMF

Figure 3: (Left) Average rank of all the approaches we considered as a function of the number of
iterations. For each holdout dataset, the methods are ranked based on the balanced accuracy obtained
on the validation set at each iteration. The ranks are then averaged across datasets. Lower is better.
The shaded areas represent the standard error for each method. (Right) Difference between the
maximum balanced accuracy observed on the test set and the balanced accuracy. Lower is better.

Figure 4: See Figure 3 for axes descriptions. “RBF-20-L1-5” in green denotes the results of the
method of the main paper, and “oh-RBF-20-L1-5” in red denotes the results of including pipeline
meta-data.

there were very few pipelines with multiple observations at this sparsity level; thus, a random initial
pipeline was selected. We experimented with both an RBF and linear kernel. All other training
settings remained unchanged from those described in the main paper. From Figure 5, we see that (i)
training with a linear kernel under 99.5% sparsity produces performance between random-1x and
random-2x, (ii) utilizing Adam instead of SGD still yields performance better than random-4x, and
(iii) the performance relationships between the methods remains essentially the same when run for
more iterations.

7 Additional results

The outcome of running auto-sklearn for 1000 iterations and any results from additional benchmarks
will be posted to https://github.com/rsheth80/pmf-automl/.

5

https://github.com/rsheth80/pmf-automl/

0 200 400 600 800 1000
Iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Ra
nk

 (m
ea

n
±

SE
)

random
random2x
random4x
PMF

PMF-90\% missing (Q=5)
PMF-99.5\% missing (Q=2, Lin)
PMF-99.5\% missing (Q=2, RBF)
PMF-Adam

0 200 400 600 800 1000
Iterations

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Re

gr
et

 (m
ea

n
±

SE
)

random
random2x
random4x
PMF

PMF-90\% missing (Q=5)
PMF-99.5\% missing (Q=2, Lin)
PMF-99.5\% missing (Q=2, RBF)
PMF-Adam

Figure 5: See Figure 3 for axes descriptions. “PMF” denotes the method of the main paper (run
on the 80%-observed matrix). “PMF-90% missing (Q = 5)” denotes the sparse variant run on the
10%-observed matrix (also described in main paper).

6

	Generation of training data
	Unsupervised learning capability
	Pipeline evaluation and uncertainty
	Additional sparsity experiment
	Including pipeline meta-data
	Increasing sparsity level, altering training update rule, and more iterations
	Additional results

