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Abstract

We study the problem of sparse regression where the goal is to learn a sparse
vector that best optimizes a given objective function. Under the assumption that
the objective function satisfies restricted strong convexity (RSC), we analyze
orthogonal matching pursuit (OMP), a greedy algorithm that is used heavily in
applications, and obtain a support recovery result as well as a tight generalization
error bound for the OMP estimator. Further, we show a lower bound for OMP,
demonstrating that both our results on support recovery and generalization error
are tight up to logarithmic factors. To the best of our knowledge, these are the first
such tight upper and lower bounds for any sparse regression algorithm under the
RSC assumption.

1 Introduction

The goal in sparse regression is to find the optimal sparse vector that minimizes a given objective
function. Sparse regression is an important problem in statistical machine learning since sparse
models lead to better generalization guarantees when the feature dimension is high or data is less,
eg, high-dimensional statistics [19], bioinformatics [18], etc. Sparse models also have a smaller
memory footprint and are thus useful for resource-constrained machine learning [9]. For simplicity
of exposition, we focus on the problem of sparse linear regression (SLR), which is a representative
problem in this domain. Results for this problem typically extend easily to the general case. Given
A ∈ Rn×d and y, the goal of SLR is to recover a sparse vector x̄ that minimizes ‖Ax− y‖22.

The unconditional version of sparse regression can be shown to be NP-hard via a reduction to 3-set
cover [14]. However, the problem has been studied heavily under a variety of assumptions such
as incoherence [7], null-space property [8], restricted isometry property (RIP) or restricted strong
convexity (RSC) [4, 15]. RSC, in particular, is one of the weakest and most popular assumptions for
sparse regression problems and has been studied in the context of various algorithms [27, 11, 1, 13].
In this paper, we study the SLR problem under RSC condition.

Typically SLR is studied with one of two goals: a) support recovery, i.e., recovering support (or
features) of x̄ and b) bounding generalization error

(
‖A(x−x̄)‖22/n

)
which bounds excess error on

unseen test points if each row of A is sampled from a fixed distribution. In general, support recovery
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is a more fundamental and challenging problem as a strong support recovery result usually tends to
provide strong generalization error bound.

Existing sparse regression algorithms can be broadly categorized into three categories: a) `1 min-
imization or LASSO based algorithms [6, 5, 1], b) non-convex penalty based methods [2, 11, 13],
c) greedy methods [22, 17, 27, 12]. In this work, we focus on OMP which is a greedy method that
incrementally adds elements to support based on the amount of reduction in training error. Owing to
its simplicity, flexibility, and strong practical performance, OMP is one of the most celebrated and
practically used algorithms for sparse regression.

OMP has been shown to provide support recovery in noiseless settings, i.e., when y = Ax̄, under
various conditions like incoherence [8], null-space property, RIP/RSC [28] etc. In the noisy setting,
while the generalization error of OMP has been studied [28] under RSC, these bounds do not match
known lower bounds [29] in terms of the restricted strong convexity constant. In fact, the tightest
known generalization error upper bound for polynomial time algorithms is a factor of restricted strong
convexity constant worse than the known lower bound [29, 28, 11, 30]. Furthermore, strong support
recovery results under RSC are also known only for a non-convex SCAD/MCP penalty based method
[13]. For greedy methods, there have been several recent works [20, 21, 25] that consider the problem
of support recovery. However, none of these works give strong results for this problem.

In this work, we significantly improve upon these support recovery results for OMP. We show that
if the smallest element of x̄ is larger than an appropriate noise level, then OMP recovers the full
support of x̄ (see Theorem 3.1). As noted in remarks 3 and 4 below the theorem, our result has a
better dependence on the restricted condition number than the ones in [20, 21, 25]. The proof of
Theorem 3.1 exploits the fact that if a certain element of x̄ is not included in the current support set,
then a single step of OMP should lead to a large additive decrease in the error. In addition, we present
a generalization error analysis for OMP.

Finally, we provide matching lower bounds for our support recovery and generalization error results.
To this end, we construct a design matrix that ensures that OMP picks incorrect indices until a large
number of elements are added to the support set (see Theorems 4.2, 4.3). As the support set size has
to increase arbitrarily for recovery, this also implies poor generalization error (see Theorem 4.3).

We note that our lower bound results are unconditional and are directly applicable to OMP. In contrast,
existing lower bounds such as [29] obtain a lower bound for generalization error of any polynomial
time algorithm assuming NP 6⊂ P/poly. Moreover, these lower bound results are restricted to
algorithms which recover exactly s∗-sparse vectors, where s∗ = |supp(x̄)| and hence do not apply to
OMP if it adds more than s∗ elements to the support set, which is the more meaningful scenario to
consider. Moreover, if each element of x̄ is large, then the claim of [29] is almost vacuous as one can
recover the support exactly which is the main problem in SLR. In that case, while the generalization
error lower bound of [29] holds, it does not preclude the OMP algorithm from recovering the correct
support (see Section 4).

Notation: Matrices are typically written in bold capital letters (such as A and Σ), vectors are
typically written in bold small case letters (such as x and η) and universal constants independent
of problem parameters are written as C1, C2, etc. For a matrix A, Ai represents its ith column
and AS represent the sub-matrix of A with columns in the index set S. ρ+

s (ATA), ρ−s (ATA) are
restricted smoothness and restricted strong convexity constants of the matrix A (defined below).
κ̃s(A

TA) := ρ+
1 (ATA)/ρ−s (ATA) for all s > 0. ρ+

s , ρ−s and κ̃s when used without parameter,
represent ρ+

s (ATA), ρ−s (ATA) and κ̃s(ATA) respectively. The non-zero element of x̄ with the
least absolute value is denoted as x̄min.

2 Preliminaries and Setting

In this section, we will present some preliminaries and the problem setting considered in this paper.
Broadly, we are interested in sparse estimation problems where we are given a function Q(·) and we
wish to solve minx:‖x‖0≤s∗ Q(x). This problem is in general NP-hard even when Q(·) is a quadratic
function. So, we consider this problem under restricted strong convexity (RSC) and restricted
smoothness (RSS) assumptions. While part of our results apply to this general setting, for simplicity
of presentation, we focus on the case where Q(·) is a quadratic. More concretely, in the sparse linear
regression problem where we are given a measurement matrix A ∈ Rn×d and response y ∈ Rn
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Algorithm 1 Orthogonal Matching Pursuit (OMP)
1: procedure OMP(s)
2: S0 = φ, x0 = 0, r0 = y
3: for k = 1, 2, . . . , s do
4: j ← arg max

i 6∈Sk−1

|AT
i rk−1|

5: Sk ← Sk−1 ∪ {j}
6: xk ← arg min

supp(x)⊆Sk

‖Ax− y‖22
7: rk ← y −Axk
8: end for
9: return xs

10: end procedure

and we wish to solve min‖x‖0≤s∗ ‖Ax− y‖22. We assume that the measurement matrix A satisfies
restricted strong convexity and restricted smoothness properties [4]:
Definition 2.1 (Restricted strong convexity (RSC)). A is said to be restricted strongly convex at
level s with parameter ρ−s if for every x and z such that ‖x− z‖0 ≤ s, we have

‖Ax−Az‖22 ≥ ρ
−
s ‖x− z‖22 .

Definition 2.2 (Restricted smoothness (RSS)). A is said to be restricted smooth at level s with
parameter ρ+

s if for every x and z such that ‖z− x‖0 ≤ s, we have

‖Ax−Az‖22 ≤ ρ
+
s ‖x− z‖22 .

The above definitions capture the standard strong convexity and smoothness properties but only in
sparse directions. Similarly, we can define a notion of restricted condition number.
Definition 2.3 (Restricted condition number). The restricted condition number at level s of a matrix
A is defined as

κ̃s(A
TA) =

ρ+
1

ρ−s
. (2.1)

Throughout this paper, we assume that A satisfies the above properties and denote the corresponding
parameters as ρ−s , ρ+

s , and κ̃s respectively. For our lower bound matrices in Section 4 we show that
these properties are satisfied.
Definition 2.4 (`∞ − norm). We define the `∞ − norm of a matrix A:

‖A‖∞ := max
‖x‖∞=1

‖Ax‖∞ (2.2)

We work under the generative model where x̄ is an s∗-sparse vector supported on S∗, that generates
the data. More concretely, we assume that the measurements y are generated as noisy linear
measurements of x̄:

y = Ax̄ + η, (2.3)
where each element of η is a mean zero sub-Gaussian random variable with parameter σ. This means
that for some constant C, we have,

P{|ηi| > t} ≤ C exp
(
−t2/2σ2

)
.

The non-zero element of x̄ with the least absolute value is denoted as x̄min.

In this problem setting, there are two critical questions:

1. Support recovery: The goal here is to recover the support of x̄ after observing y and
A. This question can also be posed as estimating x̄ in the `∞ norm i.e., find x̂ such that
‖x̂− x̄‖∞ is small.

2. Generalization error: Here, the goal is to compute an x̂ such that ‖A(x̂− x̄)‖2 is small.
This quantity is essentially the generalization error when the learned x̂ is used to make
prediction over test data generated from same distribution as training data A and y.

3



Table 1: Comparison between our results and several prior results on support recovery for Sparse
Linear Regression. HTP refers to Hard Thresholding Pursuit, PHT refers to Partial Hard Thresholding,
and IHT referes to Iterative Hard Thresholding. These are all thresholding based greedy algorithms.
Apart from κ̃(·), we also use κs(·) = ρ+

s (·)/ρ−s (·). All values are correct upto constants; we have
skipped order notation in the interest of succinctness. Support expansion refers to the value of s in
the paper. The |x̄min| column refers to the condition for support recovery guarantee. All support
recovery happens with some probability δ, and we incur polynomial factors of log(d/δ) in the |x̄min|
condition. We skip these in the interest of succinctness.

Related Work Support expansion (s) |x̄min| lower bound

Yuan et al. [25] [HTP] κ2
2ss
∗ σ

√
s√

ρ−2s

Shen et al. [20] [HTP] κ2
2ss
∗ σ

√
κ2s

√
ρ+

1 s

ρ−
s+s∗

Shen et al. [21] [PHT(r)] s∗ + κ2
2s min {s∗, r} σ

√
κ2s

√
ρ+

1 s

ρ−2s

Jain et al. [11] [IHT] κ2
2s+s∗s

∗ –

Zhang [28] [OMP] κ̃s+s∗s
∗ log κs+s∗ –

Theorem 3.1 [OMP] κ̃s+s∗s
∗ log κs+s∗ γ · σ

√
ρ+

1

ρ−
s+s∗

We note that in both the above problems we are allowed to output x̂ that may have s ≥ s∗ elements
in the support. This is a standard and crucial relaxation needed to provide strong guarantees under
weak assumptions for SLR. This work considers orthogonal matching pursuit (OMP) [16, 23] for
solving both of the above problems. OMP is one of the most popular methods for sparse optimization
and it is essentially a greedy method that incrementally estimates the support of x̄ by adding one
element at a time. See Algorithm 1 for a pseudo-code of OMP for SLR.

In Section 3 we show our upper bounds for the performance of OMP with respect to both the problems
above, under the RSS/RSC conditions. In Section 4, we provide a matching lower bound (upto
logarithmic factors) which shows that there exist certain sparse linear regression problems on which
OMP cannot perform significantly better than the error bounds given by our analysis. In Section 5 we
show some simple simulations to ground our results.

3 Upper bounds for OMP

We first present our key contribution which is a support recovery bound for OMP under RSC/RSS.
Theorem 3.1 (Support Recovery for OMP). Let A ∈ Rn×d and x̄ ∈ Rd be a s∗-sparse vector. Let
y = Ax̄ + η and let x̂s be the output of OMP after s iterations, where

s ≥ C1κ̃s+s∗s
∗ · log

(
5ρ+
s+s∗

ρ−s+s∗

)
,

and κ̃s+s∗ is the restricted condition number (Definition 2.3). Moreover, let∥∥∥AT
S∗\SAS(AT

SAS)−1
∥∥∥
∞
≤ γ where S = supp(x̂s). Then, for every δ ∈

(
0, e−68

)
, if

|x̄min| ≥
(

1 +
√

2 (1 + γ)
) σ

ρ−s+s∗

√
ρ+

1 log
d

δ
, (3.1)

and s+ s∗ ≥ log (1/δ), then S∗ ⊆ supp(x̂s) and ‖x̂s − x̄‖∞ ≤ σ
√

2
ρ−s

log (s/δ) with probability at

least 1− 7δ. Here C1 = 664 is a universal constant.

Remark 1: ρ−s+s∗ is the RSC constant of the ‖Ax − y‖22 objective. Hence ρ−s+s∗ is n times the
restricted strong convexity of the normalized objective 1

n‖Ax− y‖22 whose scale is independent of

n. Similarly,
√
ρ+

1 hides a
√
n. Thus |x̄min| essentially scales as 1/

√
n.
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Remark 2: The γ parameter in the above theorem is somewhat similar to the standard incoherence
parameter [24], although the incoherence parameter can be significantly larger than γ. Further,
existing results for OMP [26] require the incoherence parameter to be strictly less than 1 while our
analysis holds for arbitrary values of γ. Thus, our results apply to more general design matrices A.
Remark 3: Our assumption on |x̄min| is better at least by a factor of

√
κ̃ than corresponding

assumptions made in recent work that analyzes OMP for support recovery [20, 21, 25] (see Table 1).
Remark 4: To the best of our knowledge, [13] is the only known support recovery result for LASSO
under RSC, that provides strong guarantees as our result above. However, the non-convex penalty
based algorithm of [13] might produce iterates which are dense, so intermediate steps can be more
expensive than sparsity preserving OMP. Furthermore, while qualitatively, our bound is similar to
the bound of [13], their proof requires n ≥ ‖x̄‖21 log d which, naïvely, for many problems with
imbalanced non-zero elements of x̄ can be as large as (s∗)2.

Proof Sketch of Theorem 3.1 (see Appendix B.2 for details): Theorem 3.2 (stated below) guar-
antees that OMP has a very small objective value after a certain number of support expansion steps.
This guarantees small generalization error (Theorem 3.3), but not support recovery. To guarantee
support recovery, our proof critically exploits a novel observation (Lemma B.4 in Appendix B.2) that
if at any iteration of OMP, full support recovery has not happened, then OMP decreases function
value by a fixed, but small, additive constant. Theorem 3.2 allows us to say that even this small
constant decrement cannot happen for too long since the objective value is already small. Overall,
this means that support recovery must happen soon after we have small objective value.

Let s be the iteration index that is sufficient to satisfy the conditions for Theorem 3.2. From
Theorem 3.2 we have with probability at least 1− 2δ,

‖Axs − y‖22 ≤ ‖Ax̄− y‖22 + 40
σ2sρ+

1 log(d/δ)

ρ+
s+s∗

. (3.2)

≤ ‖η‖22 + 40σ2s log(d/δ)

Suppose any one of the support index has not been recovered (that is, |S∗\S| > 0) then if j ∈ (S∗\S)c

is selected by OMP in its (s+ 1)th iteration, we have by step 4 of Algorithm 1,∥∥∥AT
S∗\Srs

∥∥∥
∞
≤ |AT

j rs|. (3.3)

In Lemma B.4, we lower bound the LHS of (3.3) as follows:∥∥∥AT
S∗\Srs

∥∥∥
∞
≥ ρ−s+s∗ |x̄min| −

√
2(1 + γ)σ

√
ρ+

1 log(d/δ), (3.4)

with probability at least 1− 2δ. Since |x̄min| ≥
(
1 +
√

2 (1 + γ)
)

σ
ρ−
s+s∗

√
ρ+

1 log (d/δ), combining

(3.3) with (3.4) gives,

σ2 log
d

δ
≤ 1

ρ+
1

(
AT
j rs
)2
. (3.5)

This gives us an additive decrease in the function value:

‖Axs+1 − y‖22 ≤ min
xj
‖Ajxj − rs‖22

= ‖Axs − y‖22 −
1

ρ+
1

(
AT
j rs
)2 ≤ ‖Axs − y‖22 − σ

2 log(d/δ) (3.6)

Suppose that for another l iterations, the full support is not recovered. Then,

‖Axs+l − y‖22 ≤ ‖Axs − y‖22 − σ
2l log(d/δ). (3.7)

Further it can be shown that the function value at iteration s+ l cannot be too small,

‖Axs+l − y‖22 ≥ ‖η‖
2
2 − σ

2(s+ l + s∗)− 4σ2(s+ l + s∗)
√

log(d/δ), (3.8)

with probability at least 1− δ. Therefore combining (3.8) and (3.2) and plugging them in (3.7), we
finally get,

l ≤ 80s+ s+ s∗ = O (s) . (3.9)
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Therefore with good probability, OMP recovers the full support in O(s) iterations. See Appendix B.2
for details.

We now bound the training error for OMP after running a certain number of iterations (which are
fewer than the number of iterations required for support recovery as shown in Theorem 3.1). The
proof of this theorem follows via a modification of the proof of Lemma A.5 in [28]. See Appendix B.1
for the proof.
Theorem 3.2 (Training Error for OMP). Consider the setting of Theorem 3.1. Also, let

s ≥ 8κ̃s+s∗s
∗ · log

(
5ρ+
s+s∗

ρ−s+s∗

)
.

Then with probability 1− 2δ, the output x̂s of OMP after s steps satisfies:

1

n
‖Ax̂s − y‖22 ≤

1

n
‖Ax̄− y‖22 + 40

σ2s log(d/δ)

ρ+
s+s∗

· ρ
+
1

n
. (3.10)

Given good objective value decrease, we can show a tight generalization error on the output of
OMP. While in general support recovery is the main goal of a sparse regression algorithm, in several
problem scenarios one might not care about support recovery and focus only on the accuracy of the
learned predictor. See Appendix B.3 for the proof.
Theorem 3.3 (Generalization Error for OMP). Consider the setting of Theorem 3.1. Let x̂s be the
output of OMP after s iterations. For any constant C1 ≥ 8, there exists a constant C2(≤ 9C1) such
that if s satisfies,

C1κ̃s+s∗s
∗ · log

(
5ρ+
s+s∗

ρ−s+s∗

)
≥ s ≥ 8κ̃s+s∗s

∗ · log

(
5ρ+
s+s∗

ρ−s+s∗

)
,

then with probability at least 1− 4δ,

1

n

∥∥A(x̂OMP
s − x̄)

∥∥2

2
≤ C2

σ2κ̃s+s∗s
∗

n
· log

(
5ρ+
s+s∗

ρ−s+s∗

)
· log

d

δ
. (3.11)

3.1 Gaussian ensemble

Finally, we instantiate the above theorems for a Gaussian ensemble, i.e., when A is sampled from a
Gaussian distribution N (0,Σ). We denote the maximum and the minimum singular values of Σ as
σmax and σmin and the condition number of Σ as κ(Σ). To the best of our knowledge, the following
is the best known generalization error guarantee in this setting in terms of the dependence on κ(Σ).

Corollary 3.3.1 (Gaussian ensemble: generalization error). Let the rows of the matrix A ∈ Rn×d be
sampled from N (0,Σ) where Σii ≤ 1 ∀ i ∈ [d] and x̄ be a s∗-sparse vector. Let x̂s be the output of
OMP after s iterations and S = supp(x̂s) be the support recovered, where,

s = C2κ(Σ) · log (45κ(Σ)) s∗, n > 4C1
s log d

σmin(Σ)
, and s+ s∗ ≥ log

1

δ
,

for any δ > 0. Then with probability at least 1− 4δ − e−C0n, the following holds:

1

n

∥∥A(x̂OMP
s − x̄)

∥∥2

2
≤ C3

σ2κ(Σ)s∗

n
· log (45κ (Σ)) · log

d

δ

Here C0, C1, C3 and C4 are universal constants independent of any problem parameters.

Note the linear dependence of generalization error on κ(Σ). This matches the lower bound of [29],
although technically the bound does not apply to OMP as s > s∗. The proof follows directly from
Theorem 3.3 along with standard concentration results. See Appendix B.3 for details.

We now present support recovery result for Gaussian ensembles. For simplicity, we consider the case
when A is sampled from N (0, I). This can also be extended to N (0,Σ) but involves cumbersome
linear algebraic computations, which we avoid for simplicity.
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Corollary 3.3.2 (Gaussian ensemble: support recovery). Let the rows of the matrix A ∈ Rn×d be

sampled from N (0, Id×d) and x̄ be a s∗-sparse vector. Suppose further that |x̄min| ≥ 23σ
√

log(d/δ)
n .

Let x̂s be the output of OMP after s iterations and S = supp(x̂s) be the support recovered, where,

s ≥ C1s
∗, n > C2(s∗)

2
log

d

δ
, and s+ s∗ ≥ log

1

δ
,

for any δ > 0. Then S∗ ⊆ supp(x̂s) and ‖x̂s − x̄‖∞ ≤ 2σ
√

2 log(s/δ)
n with probability at least

1− e−C0n − 9δ. Here C0, C1 and C2 are universal constants independent of any problem parameter.

This matches the bounds of [13] up to constants. The proof directly follows from Theorem 3.1 along
with standard Gaussian concentration results. See Appendix B.3 for details.

4 Lower bounds for OMP

In this section, we provide lower bounds on the performance of OMP, both in terms of support
recovery and generalization error. These bounds show that:

• The imperative quantities we make assumptions on in the upper bound section, viz: κ̃s+s∗
and γ are relevant and meaningful.
• Given bounds on these quantities, our results are tight, up to logarithmic factors.

To provide these lower bounds, we construct matrices M(ε) that are parametrized by ε. We fix x̄ to
be an s∗-sparse vector such that: {

x̄i =
√

1/s∗ if 1 ≤ i ≤ s∗,
x̄i = 0 if s∗ < i.

(4.1)

Thus, S∗ := supp(x̄) = {1, 2, . . . , s∗}. All our lower bound theorems use this fixed vector which is
independent of the noise level σ. Our results are thus stronger than a typical minimax rate in which x̄
can be scaled based on σ. For instance, the lower bounds of [29], [30] use such a strategy. Also, the
support is distributed evenly across the x̄i’s (4.1). Thus, we show that even large elements are not
recovered.

We now define M(ε) ∈ Rn×d for a given ε ∈ [0, 1], any s∗ ≤ d ≤ n in the following manner: M
(ε)
1:s∗

are random orthogonal vectors such that
∥∥∥M(ε)

i

∥∥∥2

2
= n, ∀ i ∈ [s∗]. For i ∈ [d] \ [s∗], each column

vector is defined as,

M
(ε)
i =

√
1− ε
s∗

s∗∑
j=1

M
(ε)
j +

√
ε gi, (4.2)

where gi is such that ‖gi‖22 = n, gTi M
(ε)
1:s∗ = 0 and gTi gj = 0 for all i 6= j.

The intuition behind this construction is that OMP would prefer the average direction M
(ε)
S∗ x̄ over

any of the correct directions M
(ε)
i , where i ∈ S∗. Thus, we add a scaled version of M

(ε)
S∗ x̄ to each of

the other orthogonal vectors of the matrix.

The parameter ε is set carefully to ensure that the condition number of the matrix does not increase
too much, so that M(ε) satisfies the constraints of Theorem 3.3 and Theorem 3.1 (upto constants).
This is captured in the next lemma:
Lemma 4.1. The matrix M(ε) satisfies

• κ̃s
(
M(ε)

)
≤ 4(1 + 2(1− ε)s) = O(s)

•
∥∥∥∥M(ε)T

S∗\SM
(ε)
S

(
M

(ε)T
S M

(ε)
S

)−1
∥∥∥∥
∞
≤ 1√

s∗(1−ε)
for S ∩ S∗ = φ.

We now use the above construction to show that in the noiseless case, i.e., when y = M(ε)x̄, OMP
fails to recover any of the support elements in S∗ for some ε. Similarly, we show that in the noisy
case, support recovery fails and hence the generalization error of OMP is also large and matches the
upper bound provided in Theorem 3.3. Proofs for this section can be found in Appendix C.
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4.1 Noiseless case

For the deterministic noiseless case, i.e., σ = 0, we consider the matrix M(ε) for ε = (1− 3/2s∗) and
show that OMP requires to add all the elements in support to recover the correct support.
Theorem 4.2. For every value of d, n and s∗ where s∗ ≤ d ≤ n, there exists a design matrix
A ∈ Rn×d and a s∗-sparse vector x̄ (defined in (4.2), (4.1)) such that the following holds true for
OMP when applied to the sparse linear regression problem with y = Ax̄ and when OMP is executed
for s ≤ d− s∗ iterations:

• κ̃s(A) ≤ 16(s/s∗) and γ ≤
√

2/3.

• The support set S recovered by OMP after s iterations is disjoint from S∗, i.e., S∗ ∩ S = φ.

Our support recovery result in Theorem 3.1 requires s ≥ Cκ̃s+s∗s
∗ and one natural question is

whether running OMP for s iterations is necessary for recovering the actual support. This theorem
guarantees that it is indeed the case, i.e., if design matrix A is ill-conditioned then OMP has to work
with support sets of size s ≥ κ̃s+s∗s∗. This in turn implies that the number of rows in A (i.e., sample
complexity) should also scale with κ̃s+s∗ .

Note that the lower bound results of [29], [30] do not provide any insights for how the sample
complexity of an algorithm should scale with κs+s∗ for support recovery. In fact for this problem
their results are vacuous if |x̄min| is reasonably large. For instance, with the x̄ defined in (4.1) and
the design matrix proposed by [29], OMP can recover the true support of x̄ exactly after just O (s∗)
iterations with n = s∗ log d samples. Thus, a large condition number of A in their construction does
not imply difficulty in recovery for OMP.

4.2 Noisy case

For the noisy case, i.e., σ 6= 0, we can study both support recovery as well as generalization error
behavior with respect to the restricted condition number κ̃s+s∗ . For this section, we consider the
matrix M(ε) for ε = (1− 1/4s∗). That is, we show that with high probability, OMP starts recovering
the correct support only after d1−α iterations for some constant α > 0. This further implies that
the generalization error cannot be better than the lower bound on generalization error we showed in
Theorem 3.3 (upto constants).
Theorem 4.3. For every value of d and s∗, and any constants α ∈ (0, 1), δ ∈ (0, 1), such that
8 ≤ s∗ ≤ s ≤ d1−α and d ≥ max

{
32 log (1/δ) , 41/α

}
, there exists a sparse linear regression

problem with y = Ax̄ + η, η ∼ N
(
0, σ2In×n

)
, with design matrix A, and a s∗-sparse vector x̄

defined in (4.2),(4.1) such that the following holds:

• κ̃s(A) ≤ 36 (s/s∗) for all s and γ ≤ 1/2,

• With probability at least 1− δ, the output x̂s of OMP after s steps satisfies:

1

n
‖Ax̂s −Ax̄‖22 ≥

σ2κ̃s+s∗s
∗

18n
· log

d

δ
,

• Support set S recovered by OMP after s iterations is disjoint from S∗.

Note that the dependence of the generalization error bound on κ̃s+s∗ matches our generalization error
bound in Theorem 3.3. Interestingly, for our construction, noise ends up helping recovery because
while Theorem 4.2 ensures that the recovery of true support elements does not occur till the very last
step, noise can only help in recovering one of the true elements. However, the probability of picking
up the correct element by chance is tiny as we restrict s ≤ d1−α. We in fact believe that the result
holds generally for any s and d. However, proving it turns out to be quite intricate since it requires
finer results about the the behavior of the order statistics of independent Gaussian variables.

5 Simulations

In this section, we present simulations that verify our results. In particular, we generate a matrix
M(ε) ∈ R1000×100, and a fixed s∗ = 10-sparse vector x̄ by using the construction given in (4.2) and
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(4.1) where ε ∈ (0, 1). We then generate y = M(ε)x̄ + σN (0, In×n) and apply OMP for recovering
the support of x̄. ŝ(ε) denotes the index or support set size that is needed by OMP for fully recovering
the support of x̄.

Note that we can also compute the actual value of κ̃ for M(ε); in general the restricted condition
number of M(ε) increases with decreasing ε, thus increasing the difficulty of the support recovery
problem.

(a) Varying condition number (b) Varying noise variance

Figure 1: Number of iterations required for recovering the full support of x̄ with respect to the
restricted condition number (κ̃s+s∗ ) of the design matrix and the sub-Gaussian parameter of the noise
term (σ2).

Figure 1(a) plots ŝ(ε) (i.e. support size required for full recovery) against restricted condition number
κ̃(M(ε)) of M(ε) generated by varying ε ∈ (0, 1). Theorem 4.2 claims that for σ = 0, full recovery
requires κ̃s to be smaller than O(d/s∗), which is observed in Figure 1(a). For larger variance σ2, full
recovery requires larger number of iterations for smaller κ̃.

As mentioned in the remark below Theorem 4.3, adding noise can only help in case of large κ̃ as our
construction precludes full recovery unless s = d. We observe this behavior in both Figure 1(a) and
1(b), where slightly larger value of σ ends up helping support recovery, but for larger values of noise
variance, OMP’s performance is similar to an algorithm that simply selects each feature uniformly at
random.

6 Conclusion

In this paper, we analyze OMP for the sparse regression problem under RSC/RSS assumptions. We
obtain support recovery and generalization guarantees for OMP under this setting. We also provide
lower bounds for OMP showing that our results are tight up to logarithmic factors. We note that our
results significantly improve upon a long list of existing results for greedy methods and match the
best known results for sparse regression that use nonconvex penalty based methods. In contrast to
nonconvex penalty methods however, OMP guarantees the sparsity of intermediate iterates and hence
can be much more efficient. We also verify our results with synthetic experiments.
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A General properties of Gaussians

Lemma A.1. If U ∈ Rn×k has unit norm orthogonal columns where k ≥ log 1/δ, and η ∼
N (0, σ2In×n) then ∥∥UTη

∥∥2

2
≤ σ2k + 4σ2

√
k log

1

δ
(A.1)

holds with probability at least 1− δ

Proof. Using an exponential probability tail inequality of positive semidefinite quadratic forms in a
sub-gaussian random vector [10],

P

{
1

σ2

∥∥UTη
∥∥2

2
> Tr(UUT ) + 2

√
Tr(UUTUUT )t+ 2 ‖U‖2 t

}
≤ e−t

or, P
{

1

σ2

∥∥UTη
∥∥2

2
> k + 2

√
kt+ 2t

}
≤ e−t

Setting t = log 1
δ and assuming k ≥ log 1

δ , we get the required result.

B Proofs of results in Section 3

Algorithm 2 Orthogonal Matching Pursuit (OMP) for General Q(·)
1: procedure GENERAL OMP(s)
2: S0 = φ, x0 = 0
3: for k = 1, 2, . . . , s do
4: j ← arg max

i 6∈Sk−1

|∇Q(xk−1)|

5: Sk ← Sk−1 ∪ {j}
6: xk ← arg min

supp(x)⊆Sk

Q(x)

7: end for
8: return xs
9: end procedure

B.1 Proof of Theorem 3.2

We wish to prove Theorem 3.2 in this section. We in fact prove a more general version of the theorem
that holds for any function Q(·). Algorithm 2 is the OMP algorithm generalized to any Q(·). To show
guarantees in this setting, we assume that Q(·) satisfies Restricted Smoothness (RSS) and Restricted
Strong Convexity (RSC) properties, given by respective constants ρ+

s and ρ−s parametrized by the
sparsity level s. We need that for all x,y such that ‖y − x‖0 ≤ s,

ρ−s ‖y − x‖22 ≤ Q(y)−Q(x)− 〈∇Q(x),y − x〉 ≤ ρ+
s ‖y − x‖22 . (B.1)

Note that for the sparse linear regression problem, setting the objective function to Q(x) :=

‖Ax− y‖22 converts Algorithm 2 to Algorithm 1. Further, this Q(·) indeed satisfies the RSS
and RSC constants of the matrix A as defined in definitions 2.2 and 2.1.

In order to present this result, we need the following notation from [28]. For any sparsity level s and
any vector x, define

εs(x) = sup
‖u‖0=s,‖u‖2=1

|∇Q(x)Tu|, (B.2)

εs(x) is essentially the `2 norm of∇Q(x) restricted to its largest s coordinates (in absolute value).
We are specifically interested in εs(x̄) where x̄ is an s∗-sparse vector that we are trying to estimate.
In particular for the linear regression case, x̄ is the generative parameter (y = Ax̄ + η). As we shall
see in B.3, εs(x̄) determines the sub-optimality of the OMP estimator on the sparse linear regression
problem. Thus, we first write a lemma quantifying how large this quantity can be.
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Lemma B.1. For the sparse linear regression problem with Q(x) = ‖Ax− y‖22, suppose that
maxi ‖Ai‖22 ≤ n. Then with probability at least 1− δ,

ε2s(x̄) ≤ 8σ2ρ+
1 s log

2d

δ
. (B.3)

Proof. For the sparse linear regression problem,

εs(x̄) = sup
‖u‖0=s,‖u‖2=1

|∇Q(x̄)Tu|

= sup
‖u‖0=s,‖u‖2=1

∣∣2uTATη
∣∣

≤ sup
‖u‖0=s,‖u‖2=1

(
2 ‖u‖2

∥∥(ATη)supp(u)

∥∥
2

)
= 2 sup

|S|=s

∥∥AT
Sη
∥∥

2

≤ 2
√
s
∥∥ATη

∥∥
∞

ξ1
≤ 2
√
sσ

√
2ρ+

1 log
2d

δ

= 2
√

2σ

√
ρ+

1 s log
2d

δ

=⇒ ε2s(x̄) ≤ 8σ2ρ+
1 s log

2d

δ

Here ξ1 holds with probability (1− δ).

We now write the key technical lemma, which is a strengthened version of Lemma A.5 from [28].
We show that if OMP is run to a slightly larger (only in constants) expansion set then we get much
better convergence to Q(x̄). This improved convergence is key to achieving a better generalization
error (Theorem 3.3). For the statement and proof of the following lemma, we use the notation of [28].
Additionally, we define s∗ = |F̄ |.
Lemma B.2 (Modified version of lemma A.5 in [28]). Suppose OMP is run till s ≥ k + s∗ steps,
where

k ≥ 4|F̄ \ F (0)|ρ
+
1

ρ−s
log

(
20

(
ρ+
s

ρ−s

)2
)

, then

Q(xk) ≤ Q(x̄) + 2.5εs(x̄)2/ρ+
s .

Proof. We strengthen the proof of Lemma A.5 of [28] appropriately. First, create the split on L
differently, using the following µ:

µ = 10

(
ρ+
s

ρ−s

)2

. (B.4)

This value of µ will be plugged in later.

Next, we use lemma A.1 from [28] at level s instead of level m as has been done in the original proof.
This leads to a modified value of ql:

min
x∈F̄l

Q(x) ≤ Q(x̄) + ql, where

ql = 1.5ρ+
s

m∑
i=2l

x̄2
i + 0.5

εs(x̄)2

ρ+
s

.

Thus, equation (12) in [28] becomes

Q(xk)−Q(x̄) ≤ 3µ−1ρ+
s

m∑
i=2l

x̄2
i +

0.5

ρ+
s

(1 + µ−1)εs(x̄)2. (B.5)
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We have a different splitting condition compared to [28]. Now, either

2µ−1ρ+
s

m∑
i=2l

x̄2
i ≤

1

ρ+
s

(1 + µ−1)εs(x̄)2

in which case the theorem follows by simply replacing the first term in the RHS of equation B.5 and
using (1 + µ−1) ≤ 2. We consider the other case:

2µ−1ρ+
s

m∑
i=2l

x̄2
i >

1

ρ+
s

(1 + µ−1)εs(x̄)2.

In this case, we use the same approach as in [28], but modify from the fourth inequality onwards (see
below),

ρ−s ‖xk − x̄‖22 ≤ 2(Q(xk)−Q(x̄)) +
εs(x̄)2

ρ−s

≤ 6µ−1ρ+
s

m∑
i=2l

x̄2
i + (2 + µ−1)

εs(x̄)2

ρ−s

≤ 6µ−1ρ+
s

m∑
i=2l

x̄2
i + 2(1 + µ−1)

εs(x̄)2

ρ−s

≤ 6µ−1ρ+
s

m∑
i=2l

x̄2
i +

(
ρ+
s

m∑
i=2l

x̄2
i

)
4ρ+
s µ
−1

ρ−s

=

(
4ρ+
s µ
−1

ρ−s
+ 6µ−1

)
ρ+
s

m∑
i=2l

x̄2
i

≤
(

10ρ+
s µ
−1

ρ−s

)
ρ+
s

m∑
i=2l

x̄2
i

ξ1
= ρ−s

m∑
i=2l

x̄2
i .

In ξ1 we plug in the value of µ from B.4. The rest of the proof follows in the same manner as the
original proof.

Theorem B.3. If Q(·) satisfies RSC and RSS and if

s ≥ 8κ̃s+s∗s
∗ log 5κs+s∗ , (B.6)

then the output x̂s of OMP after s steps satisfies

Q(x̂s) ≤ Q(x̄) + 2.5
εs+s∗(x̄)2

ρ+
s+s∗

. (B.7)

Proof. Writing Lemma B.2 other words, if OMP is run till s̄ ≥ k + s∗ steps, where

k ≥ 8κ̃s̄s
∗ log 5κs̄

then,

Q(xk) ≤ Q(x̄) + 2.5
εs̄(x̄)2

ρ+
s̄

.

Setting k = s and s̄ = s+ s∗, we have that if OMP is run till s+ s∗ steps, where

s ≥ 8s∗κ̃s+s∗ log 5κs+s∗

then,

Q(xs) ≤ Q(x̄) + 2.5
εs+s∗(x̄)2

ρ+
s+s∗
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Proof of Theorem 3.2. We set Q(x) = ‖Ax− y‖22 in Theorem B.3. Now, plugging in the value of
εs(x̄)2 from Lemma B.1, we get that with probability at least 1− 2δ,

‖Ax̂s − y‖22 ≤ ‖Ax̄− y‖22 + 2.5
8σ2ρ+

1 (s+ s∗)

ρ+
s+s∗

log
d

δ

=⇒ 1

n
‖Ax̂s − y‖22 ≤

1

n
‖Ax̄− y‖22 + 40

σ2ρ+
1 s log (d/δ)

nρ+
s+s∗

.

B.2 Proof of Theorem 3.1

We first prove the following crucial lemma required for Theorem 3.1, as also discussed in the main
paper.
Lemma B.4. Let A ∈ Rn×d and x̄ ∈ Rd be a s∗-sparse vector. Let y = Ax̄ + η and let x̂s be the
output of OMP after s iterations, where

s ≥ 8κ̃s+s∗s
∗ · log

(
5ρ+
s+s∗

ρ−s+s∗

)
,

and κ̃s+s∗ is the restricted condition number (Definition 2.3). Moreover, let∥∥∥AT
S∗\SAS(AT

SAS)−1
∥∥∥
∞
≤ γ where S = supp(x̂s). Then, if

|x̄min| ≥ (1 +
√

2(1 + γ))
σ

ρ−s+s∗

√
ρ+

1 log d/δ, (B.8)

then for all l ≥ 0, if complete support recovery hasn’t happened till s+ l iterations of OMP, then
with high probability, the function value after s+ l iterations satisfies,

‖Axs+l − y‖22 ≤ ‖Axs − y‖22 − σ
2l log

d

δ
(B.9)

Proof. If OMP at (s+ 1)th picks up an index j in (S∗)c, then∥∥∥AT
S∗\SA⊥S (Ax̄ + η)

∥∥∥
∞
≤ |AT

j A⊥S (Ax̄ + η)| (B.10)

We now compute a lower bound for the L.H.S. in (B.10):∥∥∥AT
S∗\SA⊥S (Ax̄ + η)

∥∥∥
∞
≥
∥∥∥AT

S∗\SA⊥S AS∗ x̄S∗

∥∥∥
∞
−
∥∥∥AT

S∗\SA⊥Sη
∥∥∥
∞

=
∥∥∥AT

S∗\SA⊥S AS∗\Sx̄S∗\S

∥∥∥
∞
−
∥∥∥AT

S∗\SA⊥Sη
∥∥∥
∞

≥

∥∥∥AT
S∗\SA⊥S AS∗\Sx̄S∗\S

∥∥∥
2√

|S∗\S|
−
∥∥∥AT

S∗\SA⊥Sη
∥∥∥
∞

≥
ρ−(AT

S∗\SA⊥S AS∗\S)
∥∥x̄S∗\S

∥∥
2√

|S∗\S|
−
∥∥∥AT

S∗\SA⊥Sη
∥∥∥
∞

≥ ρ−(AT
S∗\SA⊥S AS∗\S)|x̄min| −

∥∥∥AT
S∗\SA⊥Sη

∥∥∥
∞

(B.11)

We can analyze the first term in (B.11) as follows. Consider the matrix,

AT
S∪S∗AS∪S∗ =

[
AS∗\S AS

]T [
AS∗\S AS

]
=

[
AT

S∗\SAS∗\S AT
S∗\SAS

AT
SAS∗\S AT

SAS,

]
and its Schur complement with respect to its block AT

SAS:[
AT

S∪S∗AS∪S∗/A
T
SAS

]
= AT

S∗\SAS∗\S −AT
S∗\SAS(AT

SAS)−1AT
SAS∗\S

= AT
S∗\S(I−AS(AT

SAS)−1AT
S )AS∗\S

= AT
S∗\SA⊥S AS∗\S (B.12)
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Therefore from the Schur eigenvalue inequality, we have

ρ−
([

AT
S∪S∗AS∪S∗/A

T
SAS

])
≥ ρ−(AT

S∪S∗AS∪S∗) ≥ ρ−s+s∗ (B.13)

We can upper bound the second term in (B.11) by using Cauchy-Schwarz and directly assuming an
infinity norm upper bound as∥∥∥AT

S∗\SA⊥Sη
∥∥∥
∞

=
∥∥∥AT

S∗\S(I−AS(AT
SAS)−1AT

S )η
∥∥∥
∞

≤
∥∥∥AT

S∗\Sη
∥∥∥
∞

+
∥∥∥AT

S∗\SAS(AT
SAS)−1AT

Sη
∥∥∥
∞

≤
∥∥∥AT

S∗\Sη
∥∥∥
∞

+
∥∥∥AT

S∗\SAS(AT
SAS)−1

∥∥∥
∞

∥∥AT
Sη
∥∥
∞

≤ (1 + γ)
∥∥AT

S∪S∗η
∥∥
∞

(
Assuming

∥∥∥AT
S∗\SAS(AT

SAS)−1
∥∥∥
∞
≤ γ

)
≤
√

2(1 + γ)σ

√
ρ+

1 log
2(s+ s∗)

2δ
(with probability at least 1− 2δ)

≤
√

2(1 + γ)σ

√
ρ+

1 log
d

δ
(using d ≥ s+ s∗) (B.14)

Using (B.13) and (B.14) in (B.11), we have,∥∥∥AT
S∗\SA⊥S (Ax̄ + η)

∥∥∥
∞
≥ ρ−s+s∗ |x̄min| −

√
2(1 + γ)σ

√
ρ+

1 log
d

δ
(B.15)

Since |x̄min| ≥ (1 +
√

2(1 + γ)) σ
ρ−
s+s∗

√
ρ+

1 log d/δ, from Equation (B.10) and (B.15) we get

|AT
j rs| = |AT

j A⊥S (Ax̄ + η)|

≥ ρ−s+s∗ |x̄min| −
√

2(1 + γ)σ

√
ρ+

1 log
d

δ

≥ σ
√
ρ+

1 log
d

δ

=⇒ σ2 log
d

δ
≤ 1

ρ+
1

(
AT
j rs
)2

(B.16)

Now, we upper bound the function value at iteration s+ 1:

‖Axs+1 − y‖22 ≤ min
xj
‖Ajxj − rs‖22

=
∥∥Aj(A

T
j Aj)

−1AT
j rs − rs

∥∥2

2

=

∥∥∥∥∥ 1

‖Aj‖22
AjA

T
j rs − rs

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

‖Aj‖22
AjA

T
j rs

∥∥∥∥∥
2

2

+ ‖rs‖22 − 2

〈
rs,

1

‖Aj‖22
AjA

T
j rs

〉

= ‖Axs − y‖22 −
1

‖Aj‖22

(
AT
j rs
)2

≤ ‖Axs − y‖22 −
1

ρ+
1

(
AT
j rs
)2

≤ ‖Axs − y‖22 − σ
2 log

d

δ
(Using (B.16)) (B.17)

The bound (B.17) and the argument holds for all t ≥ s as long as there is at least one more element
that OMP has not yet recovered. We wish to show an upper bound for the total number of steps that
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OMP can run without recovering all the elements in the support. Suppose OMP runs for another l
iterations without recovering all elements in the support. Then, telescoping (B.17), we get

‖Axt − y‖22 − ‖Axt+1 − y‖22 ≥ σ
2 log

d

δ
∀s ≤ t ≤ s+ l − 1

=⇒ ‖Axs − y‖22 − ‖Axs+l − y‖22 ≥ σ
2l log

d

δ
.

Proof of Theorem 3.1. From Theorem 3.2, for s̄ ≥ 8κ̃s̄+s∗s
∗ · log

(
5ρ+
s̄+s∗

ρ−
s̄+s∗

)
, we have with proba-

bility at least 1− 2δ,

‖Axs̄ − y‖22 ≤ ‖η‖
2
2 + 40σ2 s̄ρ+

1

ρ+
s̄+s∗

log
d

δ
(B.18)

Using Lemma B.4, after s̄ + l OMP iterations, if there is always at least one element that is not
recovered, the function value will decrease significantly, i.e.,

‖Axs̄ − y‖22 − ‖Axs̄+l − y‖22 ≥ σ
2l log

d

δ
(B.19)

We will now lower bound ‖Axs̄+l − y‖22 showing that l cannot be too large. This is basically asking
how best can a sub-Gaussian noise vector be fitted in the `2 norm. That is equivalent to the problem

min
‖x‖0=k

‖Ax− η‖22 =
∥∥A⊥k η∥∥2

2

= ‖η‖22 − ηTAk(AT
kAk)−1AT

k η (B.20)

Ak(AT
kAk)−1AT

k is nothing but a projection matrix which can be written as UkU
T
k for some matrix

Uk of size n× k with unit norm orthogonal columns. Consider any fixed matrix U′k of size n× k.
Since k ≥ log 1

δ using A.1 we have

ηTU′kU
′T
k η − σ2k ≤ 4σ2

√
k

√
log

1

δ
(B.21)

with probability at least 1− δ. Setting δ′ = δ
dk

,

ηTU′kU
′T
k η − σ2k ≤ 4σ2

√
k

√
log

dk

δ

with probability at least 1− δ/dk. Taking a union bound over all possible projection matrices with
respect to a k sized subset of the columns of A (of which there are about dk), we get,

max
|U′k|=k

{
ηTU′kU

′T
k η
}
− σ2k ≤ 4σ2k

√
log

d

δ
(with probability at least 1− δ)

=⇒ min
‖x‖0=k

‖Ax− η‖22 ≥ ‖η‖
2
2 − σ

2k − 4σ2k

√
log

d

δ
(with probability at least 1− δ)

(B.22)

∴ ‖Axs̄+l − y‖22 = ‖Axs̄+l −Ax∗ − η‖22
≥ min
‖x‖0=s̄+l+s∗

‖Ax− η‖22

≥ ‖η‖22 − σ
2(s̄+ l + s∗)− 4σ2(s̄+ l + s∗)

√
log

d

δ
(B.23)
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Using the upper bound of ‖Axs̄ − y‖22 from (B.18) and lower bound of ‖Axs̄+l − y‖22 from (B.23)
in (B.19) we finally get

lσ2 log
d

δ
≤ 40

σ2ρ+
1

ρ+
s̄+s∗

s log
d

δ
+ σ2(s̄+ l + s∗) + 4σ2(s̄+ l + s∗)

√
log

d

δ
(w.p. at least 1− 5δ)

=⇒ l ≤ 40s̄
ρ+

1

ρ+
s̄+s∗

+ (s̄+ l + s∗)

[
1

log d/δ
+

4√
log d/δ

]

=⇒ l ≤
40s̄

ρ+
1

ρ+
s̄+s∗

1− u
+ (s̄+ s∗)

u

1− u
(B.24)

where u := 1
log d/δ + 4√

log d/δ
. Since log(d/δ) > 68, 1

1−u < 2 and u
1−u < 1, and we have

l ≤ 80s̄
ρ+

1

ρ+
s̄+s∗

+ s̄+ s∗ ≤ 82s̄ (B.25)

Thus OMP can run only for another l steps, after which we are ensured recovery. Along with the

initial s̄ steps, this means that after a total of s = l + s̄ ≤ 83s̄ = 664κ̃s+s∗s
∗ · log

(
5ρ+
s+s∗

ρ−
s+s∗

)
steps,

we are ensured complete recovery. This completes the support recovery part of the proof.

We will now show that given full support recovery, i.e., S∗ ⊆ S, ‖x̂s − x̄‖∞ is bounded.

‖x̂s − x̄‖∞ =
∥∥∥(AT

SAS

)−1
AT

S (AS∪S∗ x̄ + η)− x̄
∥∥∥
∞

=
∥∥∥(AT

SAS

)−1
AT

S (ASx̄ + η)− x̄
∥∥∥
∞

=
∥∥∥(AT

SAS

)−1
AT

Sη
∥∥∥
∞

(B.26)

We will separately analyze the first term in (B.26). Define X := AS

(
AT

SAS

)−1
:∥∥∥(AT

SAS

)−1
AT

Sη
∥∥∥
∞

=
∥∥XTη

∥∥
∞

We will now provide a bound on
∥∥XTη

∥∥
∞:

P
{∥∥XTη

∥∥
∞ > t

}
≤

s∑
i=1

P
{∣∣XT

i η
∣∣ > t

}
≤

s∑
i=1

2 exp

{
− t2

2σ2 ‖Xi‖22

}

≤ 2s exp

− t2

2σ2 max
i≤s
‖Xi‖22

 (B.27)

Therefore, if t = σmax
i≤s
‖Xi‖2

√
2 log (s/δ), then

P

{∥∥XTη
∥∥
∞ ≤ σmax

i≤s
‖Xi‖2

√
2 log

s

δ

}
≥ 1− 2δ (B.28)

We are now left to bound max
i≤s
‖Xi‖2 to complete the proof. Note that max

i≤s
‖Xi‖2 ≤∥∥∥(AT

SAS

)−1
AT

S

∥∥∥
2
. Let w be any non-zero vector in the span of AS and define v

def
=

18



(
AT

SAS

)−1
AT

Sw. Note that

ASv = AS

(
AT

SAS

)−1
AT

Sw

= w

=⇒ ‖w‖2 ≥
√
ρ−s (AT

SAS) ‖v‖2

or,
‖v‖2
‖w‖2

≤ 1√
ρ−s (AT

SAS)

=⇒ max
i≤s
‖Xi‖2 ≤

1√
ρ−s (AT

SAS)
(B.29)

Using (B.29) in (B.28) we get

P

{∥∥XTη
∥∥
∞ ≤ σ

√
2

ρ−s (AT
SAS)

log
s

δ

}
≥ 1− 2δ (B.30)

Therefore, we get

‖x̂s − x̄‖∞ ≤ σ
√

2

ρ−s (AT
SAS)

log
s

δ
(B.31)

B.3 Proof of Theorem 3.3

Proof of Theorem 3.3. Let x = x̂OMP
s , and S = supp(x).

‖Ax−Ax̄‖22 = ‖Ax− y‖22 + ‖y −Ax̄‖22 − 2 〈Ax− y,Ax̄− y〉 (B.32)

= ‖Ax− y‖22 + ‖η‖22 + 2 〈Ax− y,η〉
= ‖Ax− y‖22 + ‖η‖22 + 2 〈Ax−Ax̄ + Ax̄− y,η〉
= ‖Ax− y‖22 − ‖η‖

2
2 + 2 〈Ax−Ax̄,η〉

≤ ‖Ax− y‖22 − ‖η‖
2
2 + 2 ‖Ax−Ax̄‖2 ‖P (AS∪S∗)η‖2

≤ ‖Ax− y‖22 − ‖η‖
2
2 + 2 ‖Ax−Ax̄‖2 σ

√
s+ s∗

√
log

d

δ
(w.p. at least 1− 2δ)

≤ ‖Ax̄− y‖22 + 40
ρ+

1

ρ+
s+s∗

σ2s log
d

δ
− ‖η‖22 + 4 ‖Ax−Ax̄‖2 σ

√
s

√
log

d

δ

(w.p. at least 1− 2δ, using (3.10))

≤ 40σ2s log
d

δ
+ 4 ‖Ax−Ax̄‖2 σ

√
s

√
log

d

δ

Let us define G := ‖Ax−Ax̄‖2 and α := σ
√
s log d/δ. Then, we have

G2 − 4Gα ≤ 40α2

=⇒ (G− 2α)2 ≤ (4 + 40)α2

=⇒ G ≤ (2 +
√

44)α

Replacing s ≤ C1κ̃s+s∗s
∗ log 5ρ

+
s+s∗/ρ−s+s∗ , we get for some constant C2 ≤ (2 +

√
44) C1 ≤ 9C1,

‖Ax−Ax̄‖22
n

≤ C2
σ2s

n
log

d

δ

‖Ax−Ax̄‖22
n

≤ C2
σ2s∗

n
κ̃s+s∗ log κs+s∗ log

d

δ
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Proof of Corollary 3.3.1. From [1, Lemma 6] it immediately implies that RSS and RSC at sparsity
level k hold with probability at least 1− e−C0n with

ρ−k =
n

2
σmin(Σ)− C1k log d

and, ρ+
k = 2nσmax(Σ) + C1k log d

where C0, C1 are universal constants. For k = s+ s∗, and since n > 4C1
k log d
σmin(Σ) we have

ρ−s+s∗ ≥
nσmin(Σ)

4

and, ρ+
s+s∗(Σ) ≤ 2.25nσmax(Σ)

Therefore it is enough to choose s ≥ 72κ(Σ) log (45κ(Σ)) s∗ to apply Theorem 3.3.

Proof of Corollary 3.3.2. Using results from the proof of 3.3.1, we can specialize for the case when
Σ = I. To invoke Theorem 3.1 we are required to see how and when does γ concentrate as n
increases for a given s. From the definition of γ, we want to upper bound

max
S

∥∥∥AT
S∗\SAS(AT

SAS)−1
∥∥∥
∞

= max
S

max
i∈S∗\S

∥∥AT
i AS(AT

SAS)−1
∥∥

1

≤
√
smax

S
max
i∈S∗\S

∥∥AT
i AS(AT

SAS)−1
∥∥

2

≤
√
smax

S
max
i∈S∗\S

∥∥AT
SAi

∥∥
2

∥∥(AT
SAS)−1

∥∥
2

≤ smax
S

max
i∈S∗\S

∥∥AT
SAi

∥∥
∞

∥∥(AT
SAS)−1

∥∥
2

≤ smax
S

max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞

∥∥(AT
SAS)−1

∥∥
2

≤ smax
S

max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞
·max

S

∥∥(AT
SAS)−1

∥∥
2

≤ smax
S

max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞

1

ρ−s

≤ smax
S

max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞

1
n/4

(w.p. at least 1− e−C0n if n ≥ 4Cs log d)

≤ 4s

n
max

S
max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞

(B.33)

To bound the quantity in (B.33) we can use the vanilla Chernoff bound. Note that it is sufficient
bounding the maximum of

(
d
2

)
inner products of pair of d-length standard Gaussian vectors. For any

two independent standard Gaussian vectors u and v in Rn, we will have

P {〈u,v〉 ≥ ε} = P
{

exp {t 〈u,v〉} ≥ etε
}

≤ inf
t>0

e−tεE
[
etZ
]n

(Z is a product of two standard normal random variables)

≤ inf
t>0

exp
{
t2
n

2
− tε

}
= exp

{
− ε

2

2n

}
(B.34)
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We need to find ε, so for a moment let us bound the RHS in (B.34) with some appropriate probability
δ′ which we will define later. This gives us

exp

{
− ε

2

2n

}
≤ δ′

=⇒ ε ≥
√

2n log
1

δ′

P

{
〈u,v〉 ≥

√
2n log

1

δ′

}
≤ δ′

or, P

{
|〈u,v〉| ≥

√
2n log

1

δ′

}
≤ 2δ′

Because we have
(
d
2

)
such unique inner products, we set δ′ = δ/(d2) and use a union bound to get

P

{
max

S
max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞
≤ 2

√
n log

d

δ

}
≥ P

{
max

S
max
i∈S∗\S

∥∥∥AT
(S∗\S)cAi

∥∥∥
∞
≤
√

2n log
(
(d2)/δ

)}
≥ 1− 2δ (B.35)

Using (B.35) in (B.33) we finally get

max
S

∥∥∥AT
S∗\SAS(AT

SAS)−1
∥∥∥
∞
≤ 8s

√
log (d/δ)

n
(with probabily at least 1− e−C0n − 2δ)

(B.36)

And if further n ≥ 64s2 log d
δ , we have γ ≤ 1 with probability at least 1 − e−C0n − 2δ. Ones we

have γ bounded by some constant, one can easily check that the requirement on |x̄min| becomes

|x̄min| ≥ 23σ

√
log

d

δ
(B.37)

Given this condition, using Theorem 3.1 we have support recovery as well as an infinity norm bound
on the parameter space

‖x̂s − x̄‖∞ ≤ 2σ

√
2 log (s/δ)

n
(B.38)

which completes the proof.

C Proofs of results in Section 4

Proof of Lemma 4.1. Consider v to be a sparse vector such that ‖v‖0 = s and ‖v‖2 = 1. Let
S := supp(v). For the rest of the proof, define A := M(ε). This induces a sub-matrix AS

which is the matrix of columns of A corresponding to the support of v. Let us further split
S = (S ∩ S∗) ∪ (S \ S∗) where S∗ = [s∗]. Consider a vector x̄ such that x̄i = 1/s∗ when i ∈ [s∗]
and 0 otherwise. Then, AS\S∗ =

√
1− ε AS∗ x̄1T|S\S∗| +

√
ε G, where G is the (n× |S\S∗|)

matrix containing column vectors gi for i ∈ S \ S∗.
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‖ASv‖22 =
∥∥√1− εAS∗ x̄1TvS\S∗ +

√
εGvS\S∗ + AS∩S∗vS∩S∗

∥∥2

2

=

∥∥∥∥∥∥
∑
i∈S∗

∑
j∈S\S∗

(vj
√

1− ε x̄i)Ai +
√
εGvS\S∗ + AS∩S∗vS∩S∗

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑

i∈S∗\S

∑
j∈S\S∗

(vj
√

1− ε x̄i)Ai +
√
εGvS\S∗ +

∑
i∈S∩S∗

 ∑
j∈S\S∗

vj
√

1− ε x̄i

+ vi

Ai

∥∥∥∥∥∥
2

2

= n(1− ε)
∑

i∈S∗\S

 ∑
j∈S\S∗

vjx̄i

2

+ ε
∥∥GvS\S∗

∥∥2

2
+ n

∑
i∈S∩S∗

 ∑
j∈S\S∗

vj
√

1− ε x̄i

+ vi

2

(C.1)

Define p :=
∑

j∈S\S∗
vj , q :=

∑
j∈S\S∗

v2
j , r :=

∑
i∈S∩S∗

vi, t :=
∑

i∈S∩S∗
v2
i = 1− q.

Since x̄i = 1/
√
s∗,

‖ASv‖22 = n(1− ε)p2 |S∗ \ S|
s∗

+ nεq + n
∑

i∈S∗∩S

(
p

√
1− ε
s∗

+ vi

)2

= n(1− ε)p2 + nεq + 2npr

√
1− ε
s∗

+ nt. (C.2)

We need to lower bound this quantity to get an estimate for ρ−s . Then,

‖ASv‖22 = n(1− ε)p2 + nεq + 2npr

√
1− ε
s∗

+ nt

≥ n(1− ε)p2 + nεq − 2np
√
t
√

1− ε+ nt

= n(p
√

1− ε−
√
t)2 + nεq.

Suppose p
√

1− ε <
√
t/2, then the bound becomes n(t+q)/4 = n/4. Else,

√
1− ε√sq ≥ p

√
1− ε ≥√

t/2. Setting t = 1− q, we get:

2(1− ε)sq ≥ 1− q

=⇒ q ≥ 1

1 + 2(1− ε)s

In any case, we get,

ρ−s = min
S⊆[d],|S|=s

min
‖v‖22=1

‖ASv‖22 ≥ min

{
n

4
,

n

4(1 + 2(1− ε)s)

}
=

n

4(1 + 2(1− ε)s)
(C.3)

Therefore κ̃s ≤ 4(1 + 2(1− ε)s).
Now, we wish to lower bound

∥∥∥AT
S∗\SAS

(
AT

SAS

)−1
∥∥∥
∞

even when some correct elements might

get recovered. This is essentially the max `1 norm of the rows of the matrix AT
S∗\SAS

(
AT

SAS

)−1
,

i.e., ∥∥∥AT
S∗\SAS

(
AT

SAS

)−1
∥∥∥
∞

= max
i∈S∗\S

∥∥∥(AT
SAS

)−1
AT

SAi

∥∥∥
1

(C.4)

AT
SAi = n

[
0|S∩S∗|

1|S\S∗|

√
1−ε
s∗

]
(C.5)
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From (C.5) we see that we only requires the sub-matrix of
(
AT

SAS

)−1
with columns corresponding

to the index set S\S∗.
Let p := |S ∩ S∗| and q := S\S∗. From block matrix inversion we have that

[(
AT

SAS

)−1
]
S\S∗

=
1

n

 Ip

√
1−ε
s∗ 1p1

T
q√

1−ε
s∗ 1q1

T
p (1− ε)1q1Tq + εIq

−1

S\S∗

=
1

n

[
−
√

1−ε
s∗ 1p1

T
q

[
(1− ε)1q1q + εIq − 1−ε

s∗ p1q1
T
q

]−1[
(1− ε)1q1Tq + εIq − 1−ε

s∗ p1q1
T
q

]−1

]
(C.6)

Let us separately compute
[
(1− ε)1q1Tq + εIq − 1−ε

s∗ p1q1
T
q

]−1
first[

(1− ε)1q1Tq + εIq −
1− ε
s∗

p1q1
T
q

]−1

=
[
εIq + (1− ε)

(
1− p

s∗

)
1q1q

]−1

=
1

ε
Iq −

1
ε2 (1− ε)

(
1− p

s∗

)
1 + (1− ε)

(
1− p

s∗

)
q
ε

1q1
T
q

=
1

ε

[
Iq −

(1− ε)
(
1− p

s∗

)
ε+ (1− ε)

(
1− p

s∗

)
q
1q1

T
q

]
(C.7)

Using (C.7) we have

−
√

1− ε
s∗

1p1
T
q

[
(1− ε)1q1q + εIq −

1− ε
s∗

p1q1
T
q

]−1

(C.8)

=−
√

1− ε
s∗

1p1
T
q

1

ε

[
Iq −

(1− ε)
(
1− p

s∗

)
ε+ (1− ε)

(
1− p

s∗

)
q
1q1

T
q

]

=−
√

1− ε
s∗

1p
1

ε

[
1Tq −

(1− ε)
(
1− p

s∗

)
q

ε+ (1− ε)
(
1− p

s∗

)
q
1Tq

]

=−
√

1− ε
s∗

[
1

ε+ (1− ε)
(
1− p

s∗

)
q

]
1p1

T
q (C.9)

Using (C.7) and (C.9) we have

(
AT

SAS

)−1
AT

SAi =

√
1− ε
s∗

−
√

1−ε
s∗

[
1

ε+(1−ε)(1− p
s∗ )q

]
1p1

T
q

1
ε

[
Iq −

(1−ε)(1− p
s∗ )

ε+(1−ε)(1− p
s∗ )q

1q1
T
q

]
1q

=

√
1− ε
s∗

−
√

1−ε
s∗

[
q

ε+(1−ε)(1− p
s∗ )q

]
1p

1
ε

[
ε

ε+(1−ε)(1− p
s∗ )q

]
1q


= −

√
1− ε
s∗

1

ε+ (1− ε)
(
1− p

s∗

)
q

[
−q
√

1−ε
s∗ 1p

1q

]

=⇒
∥∥∥(AT

SAS

)−1
AT

SAi

∥∥∥
1

=

√
1− ε
s∗

q

ε+ (1− ε)
(
1− p

s∗

)
q

[
p

√
1− ε
s∗

+ 1

]
(C.10)

Therefore
∥∥∥AT

S∗\SAS

(
AT

SAS

)−1
∥∥∥
∞

=
√

1−ε
s∗

q

ε+(1−ε)(1− p
s∗ )q

[
p
√

1−ε
s∗ + 1

]
.

Proof of Theorem 4.2. We shall construct a matrix A ∈ Rn×d where n ≥ d.

Having a closer look at Algorithm 1 for sparse linear regression , we can see that ∇Q(xk) =
2
nAT (Axk − y). The residual vector is now rk := y −Axk and hence the selected index is j is
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arg max
i∈Sc

k

|AT
i rk|. Therefore with proper construction of the matrix A, we can force the new selected

index to be in (S∗)c.
We first fix the vector to be estimated, x̄, as x̄i = 1/

√
s∗ ∀ i ∈ [s∗] and 0 otherwise. Thus, S∗ = [s∗]

and we take s∗ ≥ 2. We define A := M(ε) and choose a constant ε in the range [1− 3/2s∗, 1− 1/s∗).
We assume that OMP fails to recover any support by the (k − 1)th iterate, i.e., Sk−1 ∩ S = φ. At the
kth OMP iteration, for i 6∈ (Sk−1 ∪ S∗),

|AT
i rk−1| = |

√
1− ε yT rk−1 +

√
εgTi rk−1|

=
√

1− ε|yT rk−1|

=
√

1− ε
∑
j∈S∗

x̄j |rTk−1Aj | (C.11)

Now let us consider the term rTk−1Aj for all j ∈ S∗.

rTk−1Aj = yT (I−ASk−1
(AT

Sk−1
ASk−1

)−1AT
Sk−1

)Aj

ξ1
= yTAj −

[
yTASk−1

(AT
Sk−1

ASk−1
)−11

]
(
√

1− ε yTAj)

= (AS∗ x̄)TAj −
[
yTASk−1

(AT
Sk−1

ASk−1
)−11

]
(
√

1− ε (AS∗ x̄)TAj)

= nx̄j −
[
yTASk−1

(AT
Sk−1

ASk−1
)−11

]
(
√

1− ε (nx̄j))

Here, ξ1 holds because gTl Aj = 0,∀ l ∈ Sk−1, j ∈ S∗. Now, because x̄j = 1/
√
s∗ for all index

j ∈ S∗, the above quantity is the same irrespective of what j is. Thus, we can write (C.11) as

|AT
i rk−1| =

√
1− ε

∑
j∈S∗

x∗j |rTk−1Aj |

=
√

1− ε
√
s∗max

j∈S∗
|rTk−1Aj | (C.12)

Therefore for ε such that
√

1− ε
√
s∗ > 1, or when ε < 1 − 1

s∗ , then |AT
i rk−1| > max

j∈S∗
|AT

j rk−1|

which would imply that the algorithm in the kth iteration picks an incorrect index that is not contained
in S∗.

Using Lemma 4.1, setting ε = 1− 3/2s∗, we get

κ̃s(A) ≤ 16s

s∗
and γ ≤

√
2

3
(C.13)

Proof of Theorem 4.3. When the model is noisy, we consider a similar matrix A := M(ε) discussed
in 4.1 where we set ε = 1− 4/s∗. Further, we are concerned about the asymptotic failure of OMP in
the presence of a large number of samples. So we set n ≥ 4σ2s2 log d/δ. Suppose that OMP has not
recovered any support until k iterations. We show that even in the next (ie, (k + 1)th) iteration, an
incorrect support is picked. The criteria for OMP to not select an index in S∗ is

max
j 6∈(S∗∪Sk)

∣∣AT
j rk

∣∣ ≥ max
i∈S∗

∣∣AT
j rk

∣∣ (C.14)

We will show that the above inequality holds with good probability. We denote 1 as the vector with
all its elements as 1. Denote the projection matrix corresponding to a matrix ASk as P (ASk) :=
ASk(AT

Sk
ASk)−1AT

Sk
. Note that rk = (I− P (ASk))(AS∗ x̄ + η).

∣∣AT
j rk

∣∣ =
∣∣AT

j (I− P (ASk))(AS∗ x̄ + η)
∣∣

=
∣∣AT

j AS∗ x̄−AT
j P (ASk)AS∗ x̄ + AT

j η −AT
j P (ASk)η

∣∣ (C.15)
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We can analyze these terms separately as below

AT
j AS∗ x̄ = (

√
1− εAS∗ x̄ +

√
εgj)

TAS∗ x̄

= n
√

1− ε (C.16)

AT
j P (ASk)AS∗ x̄ = AT

j ASk(AT
Sk

ASk)−1AT
Sk

AS∗ x̄

= n(1− ε)1T (AT
Sk

ASk)−1AT
Sk

AS∗ x̄

=
n(1− ε)

n(1 + (k − 1)(1− ε))
1TAT

Sk
AS∗ x̄ (∵ 1 is an eigenvector of AT

Sk
ASk )

=
1− ε

1 + (k − 1)(1− ε)
1T1n

√
1− ε

=
nk(1− ε)

√
1− ε

1 + (k − 1)(1− ε)
(C.17)

AT
j P (ASk)η =

1− ε
1 + (k − 1)(1− ε)

1TAT
Sk
η

=
1− ε

1 + (k − 1)(1− ε)
∑
l∈Sk

AT
l η (C.18)

Similarly we can analyze
∣∣AT

i rk
∣∣∣∣AT

i rk
∣∣ =

∣∣AT
i (I− P (ASk))(AS∗ x̄ + η)

∣∣
=
∣∣AT

i AS∗ x̄−AT
i P (ASk)AS∗ x̄ + AT

i η −AT
i P (ASk)η

∣∣ (C.19)

We can analyze these terms separately as below

AT
i AS∗ x̄ =

n√
s∗

(C.20)

AT
i P (ASk)AS∗ x̄ = AT

i ASk(AT
Sk

ASk)−1AT
Sk

AS∗ x̄

=
n
√

1− ε√
s∗

1T (AT
Sk

ASk)−1AT
Sk

AS∗ x̄

=
n
√

1− ε√
s∗n(1 + (k − 1)(1− ε))

1TAT
Sk

AS∗ x̄ (∵ 1 is an eigenvector of AT
Sk

ASk )

=

√
1− ε√

s∗(1 + (k − 1)(1− ε))
1T1n

√
1− ε

=
nk(1− ε)√

s∗(1 + (k − 1)(1− ε))
(C.21)

AT
i P (ASk)η =

√
1− ε√

s∗ (1 + (k − 1)(1− ε))
1TASkη

=

√
1− ε√

s∗(1 + (k − 1)(1− ε))

∑
l∈Sk

AT
l η (C.22)

Thus, for OMP to not recover a correct support at any iteration k ≤ s, using (C.15) to (C.22), we
have a required condition for all i ∈ S∗ \ Sk−1, j ∈ (S∗ ∪ Sk−1)c.∣∣AT

i AS∗ x̄−AT
i P (ASk)AS∗ x̄ + AT

i η −AT
i P (ASk)η

∣∣
≤
∣∣AT

j AS∗ x̄−AT
j P (ASk)AS∗ x̄ + AT

j η −AT
j P (ASk)η

∣∣
or,

∣∣∣∣∣ 1√
s∗

1

1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ AT

i η

∣∣∣∣∣
≤

∣∣∣∣∣
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ AT

j η

∣∣∣∣∣ (C.23)
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Now, using triangle inequality on the LHS and RHS of C.23, we have a sufficient condition for
failure:

1√
s∗

1

1 + (k − 1)(1− ε)

∣∣∣∣∣nε−√1− ε
∑
l∈Sk

AT
l η

∣∣∣∣∣+
∣∣AT

i η
∣∣

≤
√

1− ε
1 + (k − 1)(1− ε)

∣∣∣∣∣nε−√1− ε
∑
l∈Sk

AT
l η

∣∣∣∣∣− ∣∣AT
j η
∣∣

Rearranging terms we get∣∣AT
i η
∣∣+
∣∣AT

j η
∣∣ ≤ (√1− ε− 1√

s∗

)
1

1 + (k − 1)(1− ε)

∣∣∣∣∣nε−√1− ε
∑
l∈Sk

AT
l η

∣∣∣∣∣ (C.24)

Suppose k ≤ 1/9σ
√
n/log d

δ . Because
∥∥ATη

∥∥
∞ ≤ σ

√
2n log d

δ with probability at least 1− δ,

nε ≥
√
nε
√
n (C.25)

≥ 9kσε

√
n log

d

δ

ξ1
≥ 9
√

1− ε kσ
√

2n log
d

δ

≥ 9
√

1− ε
∑
l∈Sk

AT
l η

Here, ξ1 holds because s∗ ≥ 8. Then, a sufficient condition for (C.24) to be satisfied is,

2σ

√
2n log

d

δ
≤
(√

1− ε− 1√
s∗

)
1

1 + (k − 1)(1− ε)
8
√

1− ε

∣∣∣∣∣∑
l∈Sk

AT
l η

∣∣∣∣∣
=

(√
1− ε− 1√

s∗

)
1

1 + (k − 1)(1− ε)
8
√

1− ε
∑
l∈Sk

AT
l η (C.26)

In the last equality (ξ1), we remove absolute value signs by instantiating Lemma C.1 (with T ←
k). The equality holds with probability larger than 1 − δ. We will now lower bound

∑
l∈Sk

AT
l η.

Consider the random variables gTj η for j ∈ [d] \ S∗ and AT
i η for i ∈ S∗. Since gj’s and Ai’s are

orthogonal to each other, these can be looked at as independent Gaussian variables with variance
σ
√
n. Now, define

Xi :=


gTi η

σ
√
n

for i ∈ [d] \ S∗

AT
i η

σ
√
n

for i ∈ S∗
(C.27)

Thus, Xi are now independent standard Gaussian variables. We wish to show high probability bounds
for the k-th order statistic of Xi’s. Suppose that the kth largest element of the set {X1, X2, . . . , Xd}
be denoted as X(k), then for all t ≥ 0

P
{
X(k+1) ≤ t

}
=

k∑
l=0

(
d

l

)
[P {X < t}]d−l [P {X ≥ t}]l

=

k∑
l=0

(
d

l

)
[1− Φ(t)]

d−l
Φ(t)l (C.28)

The term on the right is the same as the probability that a binomial random variableX , with parameters
d and Φ(t) is less than k, and from [3] we know that it is sub-gamma on the left tail with variance
factor less than dΦ(t) and scale factor 0. Also a random variable X is said to be sub-gamma on the
right tail with variance v and scale c if

logE
[
eλ(X−E[X])

]
≤ λ2v

2(1− cλ)
∀ λ > 0 (C.29)
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Also, X is said to be sub-gamma on the left tail with variance factor v and scale parameter c, if −X
is sub-gamma on the right tail with the same variance and scale parameters. Define z := k − E [X].
From Chernoff bounds we have

P
{
X(k+1) ≤ t

}
= P {X ≥ k}

= P {X − E [X] ≥ k − E [X]}

= P
{
eλ(E[X]−X) ≥ eλz

}
≤ e−λzE

[
eλ(E[X]−X)

]
≤ exp

{
−λz +

λ2v

2

}
= exp

{
− z

2

2v

}
Now, since d ≥ 4

1
α , k ≤ s ≤ d1−α ≤ d/4 ≤ d/2 ≤ dΦ(t) = E [X]. Thus, |z| ≥

∣∣d1−α − dΦ(t)
∣∣ ≥∣∣d1−α − d/2

∣∣. Further, we saw that the variance factor v ≤ dΦ(t). Now, set t =
√

log d
k . This gives,

P

{
X(k+1) ≤

√
log

d

k

}
≤ exp

−
(
d1−α − dΦ(

(√
log d

k

))2

2dΦ

(√
log d

k

)


≤ exp

{
−
(
d1−α − d

2

)2
2d

}

≤ exp

{
−
d
(
d−α − 1

2

)2
2

}

≤ exp

{
−
d
(

1
4 −

1
2

)
2

}

≤ exp

{
− d

32

}
ξ1
≤ δ (C.30)

Here, ξ1 holds because d ≥ 32 log(1/δ). Thus, for the top k gl’s that maximize gTl η,

P

{
gTl η ≥ σ

√
n log

d

k

}
≥ 1− δ (C.31)

Now, with probability at least 1− 2δ∣∣AT
l η
∣∣ =

∣∣√1− ε A∗Sx̄ +
√
εgTl η

∣∣
≥
√

1− ε σ

√
2n log

(
d

δ

)
+
√
ε σ

√
n log

(
d

k

)

≥
√

1− ε σ

√
2n log

(
d

k

)
+
√
ε σ

√
n log

(
d

k

)

≥ σ

√
n log

(
d

k

)
≥ σ

√
αn log d

(C.32)
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Therefore
∣∣∑

l∈Sk
AT
l η
∣∣ ≥ √ασk√n log d with probability at least 1− 2δ. Since, ε = 1− 4/s∗ and

s∗ ≥ 8, then (C.26) reduces to,

k ≥
(s∗ − 4)

√
log d/δ

2
√

2α log d− 4
√

log d/δ
(C.33)

which is trivially satisfies because s∗ ≥ 8 and α < 1. Therefore from the above argument, we have
that since k ≤ 1

9σ

√
n

log d/δ , then with probability at least 1− 2δ, an incorrect support is recovered at

the kth OMP iterate.

Let us now have a look at the generalization error when none of the correct support is recovered, i.e.,
Sk ∩ S∗ = φ.

1

n

∥∥ASk x̂
OMP
k −AS∗ x̄

∥∥2

2
=

1

n

∥∥ASk(AT
Sk

ASk)−1AT
Sk

(AS∗ x̄ + η)−AS∗ x̄
∥∥2

2

=
1

n

∥∥ASk(AT
Sk

ASk)−1AT
Sk

AS∗ x̄ + P (ASk)η −AS∗ x̄
∥∥2

2
(C.34)

ASk(AT
Sk

ASk)−1AT
Sk

AS∗ x̄ = ASk(AT
Sk

ASk)−11n
√

1− ε

= ASk1
n
√

1− ε
n(1 + (k − 1)(1− ε))

=
1

1 + (k − 1)(1− ε)

[
k(1− ε)AS∗ x̄ +

√
ε(1− ε)

∑
l∈Sk

gi

]

=⇒ AS∗ x̄−ASk(AT
Sk

ASk)−1AT
Sk

AS∗ x̄ =
1

1 + (k − 1)(1− ε)

[
εAS∗ x̄ +

√
ε(1− ε)

∑
l∈Sk

gi

]

=⇒
∥∥AS∗ x̄−ASk(AT

Sk
ASk)−1AT

Sk
AS∗ x̄

∥∥2

2
=

n
[
ε2 + kε(1− ε)

]
(1 + (k − 1)(1− ε))2

(C.35)

Using (C.34) and (C.35) we get

1

n

∥∥ASk x̂
OMP
k −AS∗ x̄

∥∥2

2
=

1

n
‖P (ASk)η‖22 +

1

n

n
[
ε2 + kε(1− ε)

]
(1 + (k − 1)(1− ε))2

− 2

n
〈P (ASk)η, (I− P (ASk)AS∗ x̄)〉

=
1

n
‖P (ASk)η‖22 +

[
ε2 + kε(1− ε)

]
(1 + (k − 1)(1− ε))2

=
1

n
‖P (ASk)η‖22 +

ε

1 + (k − 1)(1− ε)
(C.36)

When ε = 1− 4/s∗ and s∗ ≥ 8, we have

1

n

∥∥ASk x̂
OMP
k −AS∗ x̄

∥∥2

2
=

1

n
‖P (ASk)η‖22 +

1− 4
s∗

1− 4
s∗ + 4k

s∗

≥
1
2

1
2 + 4k

s∗

≥ s∗

9k
(C.37)
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Since s ≤ 1
2σ

√
n

log d/δ ,

1

n

∥∥ASk x̂
OMP
k −AS∗ x̄

∥∥2

2
≥ 2σs∗

9

√
log d/δ

n
(C.38)

≥ σ
√

log d/δ

n

≥ σ
√

log d/δ

n

√
n

≥ 2σ2s log (d/δ)

n

≥ σ2κ̃ss
∗ log (d/δ)

18n

In the last line, we use s ≥ 1
36 κ̃ss

∗.

Lemma C.1. Suppose the same conditions as Theorem 4.3 hold. For the lower bound matrix defined
in the proof of 4.3, suppose that a correct support has not been recovered until step T ≤ s, then for
all k ∈ St, AT

k η ≥ 0.

Proof. With probability 1− δ, for all i ∈ [d],
∣∣AT

i η
∣∣ ≤ σ√2n log d

δ . Thus, for iteration k + 1,

∑
l∈Sk

AT
l η ≤ kσ

√
2n log

d

δ

≤ sσ
√

2n log
d

δ

≤

(√
n

32σ2 log d
δ

)
σ

√
2n log

d

δ

≤ n

4

Further, since s∗ ≥ 8, ε ≥ 2/3 ≥
√

1− ε. Thus,
[
nε−

√
1− ε

∑
l∈Sk

AT
l η
]
≥ 3nε/4 ≥ n/2. Now,

√
1− ε

1 + (k − 1)(1− ε)
≥

√
1− ε

1 + (s− 1)(1− ε)

≥
√

1− ε
2s(1− ε)

≥ 1

2s

=⇒
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
≥ n

4s

≥

√
n

(√
32σs

√
log d

δ

)
4s

≥ σ
√

2n log
d

δ

≥
∣∣AT

j η
∣∣ ≥ 0 (∀j ∈ (S∗ ∪ Sk−1)c)

(C.39)
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From C.23, if a j ∈ (S∗ ∪ Sk−1)c is picked, then it maximizes:∣∣∣∣∣
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ AT

j η

∣∣∣∣∣
From C.39 we can see that for any j, j′ such that AT

j η ≥ 0 and A′Tj η ≤ 0,∣∣∣∣∣
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ AT

j η

∣∣∣∣∣
=

√
1− ε

1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ AT

j η

≥
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]

≥
√

1− ε
1 + (k − 1)(1− ε)

[
nε−

√
1− ε

∑
l∈Sk

AT
l η

]
+ A′Tj η

Thus, OMP will indeed pick up an index j such that AT
j η ≥ 0. This proof holds for all steps k < T .

Thus we can say that for all k ≤ T , the index that is picked up (say Al) satisfies AT
l η ≥ 0.
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