Supplementary Document

Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithms with Optimal Rates

A Properties of Augmented Lagrangian Function and Optimality Bounds

In this section, we investigate some properties of the augmented Lagrangian function \mathcal{L}_{ρ} in (5).

1.1 Properties of the augmented Lagrangian function

Let us recall the augmented Lagrangian function \mathcal{L}_{ρ} in (5) associated with problem (1). To investigate its properties, we define the following two functions:

$$\psi_{\rho}(u,\lambda) := \frac{\rho}{2} \|u\|^2 - \langle \lambda, u \rangle, \quad \text{and} \quad \phi_{\rho}(z,\lambda) := \psi_{\rho}(Ax + By - c,\lambda). \tag{12}$$

Since $\nabla_u \psi_\rho(u, \hat{\lambda}) = \rho u - \hat{\lambda}$ is ρ -Lipschitz continuous in u for any given $\hat{\lambda} \in \mathbb{R}^n$, it is obvious that

$$\begin{aligned} \psi_{\rho}(u_{+},\hat{\lambda}) &\leq \psi_{\rho}(u,\hat{\lambda}) + \langle \nabla_{u}\psi_{\rho}(u,\hat{\lambda}), u_{+} - u \rangle + \frac{\rho}{2} \|u_{+} - u\|^{2} \\ \psi_{\rho}(u_{+},\hat{\lambda}) &\geq \psi_{\rho}(u,\hat{\lambda}) + \langle \nabla_{u}\psi_{\rho}(u,\hat{\lambda}), u_{+} - u \rangle + \frac{1}{2\rho} \|\nabla_{u}\psi_{\rho}(u_{+},\hat{\lambda}) - \nabla_{u}\psi_{\rho}(u,\hat{\lambda})\|^{2}, \end{aligned} \tag{13}$$

for any $u_+, u \in \mathbb{R}^n$, see, e.g., [18].

Given $\hat{z}^{k+1} := (x^{k+1}, \hat{y}^k) \in \text{dom}(F)$ and $\hat{\lambda}^k \in \mathbb{R}^n$, we also define the following linear function:

$$\ell_{\rho}^{k}(z) := \phi_{\rho}(\hat{z}^{k+1}, \hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho}(\hat{z}^{k+1}, \hat{\lambda}^{k}), x - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho}(\hat{z}_{k+1}, \hat{\lambda}^{k}), y - \hat{y}^{k} \rangle.$$
(14)

If we define $s^k := Ax^k + By^k - c$ and $\hat{s}^{k+1} := Ax^{k+1} + B\hat{y}^k - c$, then using the definition of ℓ_{ρ}^k and ϕ_{ρ} , we can easily show that

$$\ell_{\rho}^{k}(z) = \phi_{\rho}(z, \hat{\lambda}^{k}) - \frac{\rho}{2} \|A(x - x^{k+1}) + B(y - \hat{y}^{k})\|^{2}, \quad \forall z \in \text{dom}(F),$$

$$\ell_{\rho}^{k}(z^{\star}) = -\frac{\rho}{2} \|\hat{s}^{k+1}\|^{2} \text{ and } \ell_{\rho}^{k}(z^{k}) = \phi_{\rho}(z^{k}, \hat{\lambda}^{k}) - \frac{\rho}{2} \|s^{k} - \hat{s}^{k+1}\|^{2},$$
(15)

where $z^* \in \mathbb{Z}^*$ is any solution of (1).

For any matrix $B := [B_1, \dots, B_m]$ concatenated from m matrices B_i for $i = 1, \dots, m$, we define $L_B := ||B||^2$ and $\overline{L}_B := m \cdot \max \{ ||B_i||^2 \mid 1 \le i \le m \}$, where ||B|| and $||B_i||$ is the operator norms of B and B_i , respectively. For any $d = [d_1, \dots, d_m] \in \mathbb{R}^{\hat{p}}$, we can easily show that

$$||Bd||^{2} = ||\sum_{i=1}^{m} B_{i}d_{i}||^{2} \le ||B||^{2} ||d||^{2} \le m \sum_{i=1}^{m} ||B_{i}||^{2} ||d_{i}||^{2} \le \bar{L}_{B} ||d||^{2}.$$
 (16)

By the definition of ϕ_{ρ} , using (14), (15), and (16), for any $(x, y) \in \text{dom}(F)$, $\hat{y} \in \text{dom}(g)$, and $\hat{\lambda} \in \mathbb{R}^n$, we can derive

$$\phi_{\rho}(x,y,\hat{\lambda}) - \phi_{\rho}(x,\hat{y},\hat{\lambda}) - \langle \nabla_{y}\phi_{\rho}(x,\hat{y},\hat{\lambda}), y - \hat{y} \rangle = \frac{\rho}{2} \|B(y-\hat{y})\|^{2}$$

Hence, by (16), we can show that

$$\phi_{\rho}(x,y,\hat{\lambda}) - \phi_{\rho}(x,\hat{y},\hat{\lambda}) - \langle \nabla_{y}\phi_{\rho}(x,\hat{y},\hat{\lambda}), y - \hat{y} \rangle \le \frac{\rho L_{B}}{2} \|y - \hat{y}\|^{2} \le \frac{\rho L_{B}}{2} \|y - \hat{y}\|^{2}.$$
(17)

1.2 The proof of Lemma **2.1**: Approximate optimal solutions of (1)

For any $z \in \text{dom}(F)$, we have $F^* = \mathcal{L}(z^*, \lambda^*) \leq \mathcal{L}(z, \lambda^*) = F(z) - \langle \lambda^*, Ax + By - c \rangle$. Using the definition of $S_{\rho}(\cdot)$, we obtain

$$S_{\rho}(z,\lambda) + \langle \lambda, Ax + By - c \rangle - \frac{\rho}{2} \|Ax + By - c\|^2 = F(z) - F(z^*) \ge \langle \lambda^*, Ax + By - c \rangle.$$
(18)

This inequality implies

$$\frac{\rho}{2} \|Ax + By - c\|^2 - \|\lambda - \lambda^*\| \|Ax + By - c\| - S_{\rho}(z, \lambda) \le 0,$$
(19)

which leads to

$$2\rho S_{\rho}(z,\lambda) + \|\lambda - \lambda^{\star}\|^{2} \geq \rho^{2} \|Ax + By - c\|^{2} - 2\rho \|\lambda - \lambda^{\star}\| \|Ax + By - c\| + \|\lambda - \lambda^{\star}\|^{2}$$
$$= [\rho \|Ax + By - c\| - \|\lambda - \lambda^{\star}\|]^{2} \geq 0.$$

From from (19), we also have $||Ax + By - c|| \le \frac{1}{\rho} \left[||\lambda - \lambda^*|| + \sqrt{||\lambda - \lambda^*||^2 + 2\rho S_{\rho}(z, \lambda)} \right]$ by solving a quadratic inequation. This is the second inequality of (6).

Next, from (18), we have

$$\begin{aligned} F(z) - F^{\star} &\leq S_{\rho}(z,\lambda) - \frac{\rho}{2} \|Ax + By - c\|^{2} + \|\lambda\| \|Ax + By - c\| \\ &\leq S_{\rho}(z,\lambda) - \frac{\rho}{2} \left[\|Ax + By - c\| - \frac{\|\lambda\|}{\rho} \right]^{2} + \frac{\|\lambda\|^{2}}{2\rho} \\ &\leq S_{\rho}(z,\lambda) + \frac{\|\lambda\|^{2}}{2\rho}. \end{aligned}$$

Using the Cauchy-Schwarz inequality, it follows from $F^* \leq F(z) - \langle \lambda^*, Ax + By - c \rangle$ that $-\|\lambda^*\| \|Ax + By - c\| \leq F(z) - F^*$. Combining these two inequalities and the second estimate of (6), we obtain the first estimate of (6).

B Convergence analysis of Algorithm 1

Lemma B.1 and Lemma B.2 below are key to analyze the convergence of Algorithm 1

Lemma B.1. Assume that \mathcal{L}_{ρ} is defined by (5), and $\ell_{\rho_k}^k$ is defined by (14). Let z^{k+1} be computed by Algorithm [] Then, for any $z \in \text{dom}(F)$, we have

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \leq F(z) + \ell_{\rho_{k}}^{k}(z) + \gamma_{k} \langle x^{k+1} - \hat{x}^{k}, x - \hat{x}^{k} \rangle - \gamma_{k} \| x^{k+1} - \hat{x}^{k} \|^{2} + \beta_{k} \langle y^{k+1} - \hat{y}^{k}, y - \hat{y}^{k} \rangle - \frac{(2\beta_{k} - \rho_{k}L_{B})}{2} \| y^{k+1} - \hat{y}^{k} \|^{2}.$$
(20)

Proof. Using (17) with $\rho = \rho_k$, $(x, y) = (x^{k+1}, y^{k+1}) = z^{k+1}$, $(x, \hat{y}) = (x^{k+1}, \hat{y}^k) = \hat{z}^{k+1}$, and $\hat{\lambda} = \hat{\lambda}^k$, we have

$$\phi_{\rho_k}(z^{k+1}, \hat{\lambda}^k) \le \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k) + \langle \nabla_y \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k), y^{k+1} - \hat{y}^k \rangle + \frac{\rho_k L_B}{2} \|y^{k+1} - \hat{y}^k\|^2.$$
(21)

Next, using again ϕ_{ρ} from (12), we can write down the optimality condition of the x-subproblem at Step 5 and the y_i -subproblem at Step 6 of Algorithm 1 as follows:

$$\begin{cases} 0 = \nabla f(x^{k+1}) + \nabla_x \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k) + \gamma_k(x^{k+1} - \hat{x}^k), & \nabla f(x^{k+1}) \in \partial f(x^{k+1}), \\ 0 = \nabla g_i(y_i^{k+1}) + \nabla_{y_i} \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k) + \beta_k(y_i^{k+1} - \hat{y}_i^k), & \nabla g_i(y_i^{k+1}) \in \partial g_i(y_i^{k+1}). \end{cases}$$
(22)

Using the convexity of f and g, for any $x \in \text{dom}(f)$ and $y \in \text{dom}(g)$, we have

$$\begin{aligned} f(x^{k+1}) &\leq f(x) + \langle \nabla f(x^{k+1}), x^{k+1} - x \rangle, \quad \nabla f(x^{k+1}) \in \partial f(x^{k+1}), \\ g(y^{k+1}) &\leq g(y) + \langle \nabla g(y^{k+1}), y^{k+1} - y \rangle, \quad \nabla g(y^{k+1}) \in \partial g(y^{k+1}). \end{aligned} \tag{23}$$

Combining (21), (22), and (23), and then using the definition (5) of \mathcal{L}_{ρ} , for any $z = (x, y) \in \text{dom}(F)$, we can derive that

$$\begin{split} \mathcal{L}_{\rho_{k}}(z^{k+1},\hat{\lambda}^{k}) &= f(x^{k+1}) + g(y^{k+1}) + \phi_{\rho_{k}}(z^{k+1},\hat{\lambda}^{k}) \\ &\stackrel{(21,23)}{\leq} f(x) + \langle \nabla f(x^{k+1}), x^{k+1} - x \rangle + g(y) + \langle \nabla g(y^{k+1}), y^{k+1} - y \rangle \\ &+ \phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), y^{k+1} - \hat{y}^{k} \rangle + \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} \\ &\stackrel{(22)}{\leq} F(z) + \phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), x - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), y - \hat{y}^{k} \rangle \\ &+ \gamma_{k}\langle \hat{x}^{k} - x^{k+1}, x^{k+1} - x \rangle + \beta_{k}\langle \hat{y}^{k} - y^{k+1}, y^{k+1} - y \rangle + \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} \\ &\stackrel{(44)}{=} F(z) + \ell_{\rho_{k}}^{k}(z) + \gamma_{k}\langle x^{k+1} - \hat{x}^{k}, x - \hat{x}^{k} \rangle - \gamma_{k} \|x^{k+1} - \hat{x}^{k}\|^{2} \\ &+ \beta_{k}\langle y^{k+1} - \hat{y}^{k}, y - \hat{y}^{k} \rangle - \frac{(2\beta_{k} - \rho_{k}L_{B})}{2} \|y^{k+1} - \hat{y}^{k}\|^{2}, \end{split}$$

which is exactly (20).

Lemma B.2. Let $(z^k, \hat{\lambda}^k, z^{k+1}, \tilde{z}^{k+1})$ be generated by Algorithm 1. Then, for any $\lambda \in \mathbb{R}^n$, if $0 \leq 2\eta_k \leq \rho_k \tau_k$, then one has

$$\mathcal{L}_{\rho_{k}}(z^{k+1},\lambda) \leq (1-\tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k},\lambda) + \tau_{k}F(z^{\star}) + \frac{\gamma_{k}\tau_{k}^{2}}{2} \left[\|\tilde{x}^{k} - x^{\star}\|^{2} - \|\tilde{x}^{k+1} - x^{\star}\|^{2} \right] \\ + \frac{\beta_{k}\tau_{k}^{2}}{2} \left[\|\tilde{y}^{k} - y^{\star}\|^{2} - \|\tilde{y}^{k+1} - y^{\star}\|^{2} \right] + \frac{\tau_{k}}{2\eta_{k}} \left[\|\hat{\lambda}^{k} - \lambda\|^{2} - \|\hat{\lambda}^{k+1} - \lambda\|^{2} \right] \\ - \frac{(\beta_{k} - 2\rho_{k}L_{B})}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} - \frac{(1-\tau_{k})}{2} \left[\rho_{k-1} - \rho_{k}(1-\tau_{k}) \right] \|s^{k}\|^{2},$$
(24)

where $\tau_k \in [0, 1]$, and ρ_k , β_k , γ_k , and η_k are positive parameters, and $s^k := Ax^k + By^k - c$.

Proof. Using (20) with $z = z^k$ and $z = z^*$, respectively, and then using (15), we obtain

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \stackrel{\text{(15)}}{\leq} \mathcal{L}_{\rho_{k}}(z^{k}, \hat{\lambda}^{k}) - \frac{\rho_{k}}{2} \|s^{k} - \hat{s}^{k+1}\|^{2} + \gamma_{k} \langle x^{k+1} - \hat{x}^{k}, x^{k} - \hat{x}^{k} \rangle \\ -\gamma_{k} \|x^{k+1} - \hat{x}^{k}\|^{2} + \beta_{k} \langle y^{k+1} - \hat{y}^{k}, y^{k} - \hat{y}^{k} \rangle - \frac{(2\beta_{k} - \rho_{k}L_{B})}{2} \|y^{k+1} - \hat{y}^{k}\|^{2}, \\ \mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \stackrel{\text{(15)}}{\leq} F(z^{\star}) - \frac{\rho_{k}}{2} \|\hat{s}^{k+1}\|^{2} + \gamma_{k} \langle x^{k+1} - \hat{x}^{k}, x^{\star} - \hat{x}^{k} \rangle - \gamma_{k} \|x^{k+1} - \hat{x}^{k}\|^{2} \\ + \beta_{k} \langle y^{k+1} - \hat{y}^{k}, y^{\star} - \hat{y}^{k} \rangle - \frac{(2\beta_{k} - \rho_{k}L_{B})}{2} \|y^{k+1} - \hat{y}^{k}\|^{2}.$$

Here, $s^k := Ax^k + By^k - c$ and $\hat{s}^{k+1} := Ax^{k+1} + B\hat{y}^k - c$. Multiplying the first inequality by $(1 - \tau_k) \in [0, 1]$ and the second one by $\tau_k \in [0, 1]$ and summing up the results, and then using the fact that $\mathcal{L}_{\rho_k}(z^k, \hat{\lambda}^k) = \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^k) + \frac{(\rho_k - \rho_{k-1})}{2} \|s^k\|^2$, we can estimate

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \leq (1 - \tau_{k})\mathcal{L}_{\rho_{k}}(z^{k}, \hat{\lambda}^{k}) + \tau_{k}F(z^{\star}) - \frac{(1 - \tau_{k})\rho_{k}}{2} \|s^{k} - \hat{s}^{k+1}\|^{2} - \frac{\tau_{k}\rho_{k}}{2} \|\hat{s}^{k+1}\|^{2} + \gamma_{k}\tau_{k}\langle x^{k+1} - \hat{x}^{k}, x^{\star} - \tilde{x}^{k}\rangle - \gamma_{k}\|x^{k+1} - \hat{x}^{k}\|^{2} + \beta_{k}\tau_{k}\langle y^{k+1} - \hat{y}^{k}, y^{\star} - \tilde{y}^{k}\rangle - \frac{\beta_{k}}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} = (1 - \tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k}, \hat{\lambda}^{k}) + \tau_{k}F(z^{\star}) - \frac{\gamma_{k}}{2} \|x^{k+1} - \hat{x}^{k}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} + \frac{\gamma_{k}\tau_{k}^{2}}{2} \left[\|\tilde{x}^{k} - x^{\star}\|^{2} - \|\tilde{x}^{k+1} - x^{\star}\|^{2}\right] + \frac{\beta_{k}\tau_{k}^{2}}{2} \left[\|\tilde{y}^{k} - y^{\star}\|^{2} - \|\tilde{y}^{k+1} - y^{\star}\|^{2}\right] - \frac{(1 - \tau_{k})\rho_{k}}{2} \|s^{k} - \hat{s}^{k+1}\|^{2} - \frac{\tau_{k}\rho_{k}}{2} \|\hat{s}^{k+1}\|^{2} + \frac{(1 - \tau_{k})(\rho_{k} - \rho_{k-1})}{2} \|s^{k}\|^{2}.$$
(25)

Here, we use $\tau_k \tilde{x}^k = \hat{x}^k - (1 - \tau_k) x^k$, $\tau \tilde{y}^k = \hat{y}^k - (1 - \tau_k) y^k$, $\tau_k (\tilde{x}^{k+1} - \tilde{x}^k) = x^{k+1} - \hat{x}^k$, $\tau_k (\tilde{y}^{k+1} - \tilde{y}^k) = y^{k+1} - \hat{y}^k$, and an elementary expression $2\langle a, b \rangle - \|a\|^2 = \|a - b\|^2 - \|b\|^2$. Now, let $\tilde{s}^{k+1/2} := A \tilde{x}^{k+1} + B \tilde{y}^k - c$. Then, it is trivial to estimate the quantity \mathcal{T}_k below

$$\begin{aligned} \mathcal{T}_{k} &:= \frac{(1-\tau_{k})\rho_{k}}{2} \|s^{k} - \hat{s}^{k+1}\|^{2} + \frac{\tau_{k}\rho_{k}}{2} \|\hat{s}^{k+1}\|^{2} - \frac{(1-\tau_{k})(\rho_{k} - \rho_{k-1})}{2} \|s^{k}\|^{2} \\ &= \frac{\rho_{k}}{2} \|\hat{s}^{k+1} - (1-\tau_{k})s^{k}\|^{2} + \frac{(1-\tau_{k})}{2} [\rho_{k-1} - \rho_{k}(1-\tau_{k})] \|s^{k}\|^{2} \\ &= \frac{\rho_{k}\tau_{k}^{2}}{2} \|\tilde{s}^{k+1/2}\|^{2} + \frac{(1-\tau_{k})}{2} [\rho_{k-1} - \rho_{k}(1-\tau_{k})] \|s^{k}\|^{2}. \end{aligned}$$
(26)

Here, we use the fact that $\hat{s}^{k+1} - (1 - \tau_k)s^k = Ax^{k+1} + B\hat{y}^k - c - (1 - \tau_k)(Ax^k + By^k - c) = \tau_k(A\tilde{x}^{k+1} + B\tilde{y}^k - c) = \tau_k\tilde{s}^{k+1/2}$.

Using the relation $\mathcal{L}_{\rho}(z,\lambda) = \mathcal{L}_{\rho}(z,\hat{\lambda}) + \langle \hat{\lambda} - \lambda, Ax + By - c \rangle$ from (5), $z^{k+1} - (1-\tau_k)z^k = \tau_k \tilde{z}^{k+1}$, and (26), we can further derive from (25) for any $\lambda \in \mathbb{R}^n$ that

$$\mathcal{L}_{\rho_{k}}(z^{k+1},\lambda) \leq (1-\tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k},\lambda) + \tau_{k}F(z^{\star}) - \frac{(1-\tau_{k})}{2} \left[\rho_{k-1} - \rho_{k}(1-\tau_{k})\right] \|s^{k}\|^{2} + \frac{\gamma_{k}\tau_{k}^{2}}{2} \left[\|\tilde{x}^{k} - x^{\star}\|^{2} - \|\tilde{x}^{k+1} - x^{\star}\|^{2}\right] + \frac{\beta_{k}\tau_{k}^{2}}{2} \left[\|\tilde{y}^{k} - y^{\star}\|^{2} - \|\tilde{y}^{k+1} - y^{\star}\|^{2}\right] - \frac{\gamma_{k}}{2} \|x^{k+1} - \hat{x}^{k}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} + \tau_{k}\langle\hat{\lambda}^{k} - \lambda, A\tilde{x}^{k+1} + B\tilde{y}^{k+1} - c\rangle - \frac{\rho_{k}\tau_{k}^{2}}{2} \|\tilde{s}^{k+1/2}\|^{2}.$$

$$(27)$$

Let $\tilde{s}^{k+1} := A\tilde{x}^{k+1} + B\tilde{y}^{k+1} - c$. From the update rule $\hat{\lambda}^{k+1} := \hat{\lambda}^k - \eta_k (A\tilde{x}^{k+1} + B\tilde{y}^{k+1} - c) = \hat{\lambda}^k - \eta_k \tilde{s}^{k+1}$, if we define $M_k := \tau_k \langle \hat{\lambda}^k - \lambda, A\tilde{x}^{k+1} + B\tilde{y}^{k+1} - c \rangle$, then we can estimate M_k as $M_k = \frac{\tau_k}{\eta_k} \langle \hat{\lambda}^k - \lambda, \hat{\lambda}^k - \hat{\lambda}^{k+1} \rangle = \frac{\tau_k}{2\eta_k} [\|\hat{\lambda}^k - \lambda\|^2 - \|\hat{\lambda}^{k+1} - \lambda\|^2] + \frac{\tau_k}{2\eta_k} \|\hat{\lambda}^k - \hat{\lambda}^{k+1}\|^2$ $= \frac{\tau_k}{2\eta_k} [\|\hat{\lambda}^k - \lambda\|^2 - \|\hat{\lambda}^{k+1} - \lambda\|^2] + \frac{\eta_k \tau_k}{2} \|\tilde{s}^{k+1}\|^2.$ (28)

Substituting (28) into (27) we obtain

$$\mathcal{L}_{\rho_{k}}(z^{k+1},\lambda) \leq (1-\tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k},\lambda) + \tau_{k}F(z^{\star}) + \frac{\gamma_{k}\tau_{k}^{2}}{2} \left[\|\tilde{x}^{k} - x^{\star}\|^{2} - \|\tilde{x}^{k+1} - x^{\star}\|^{2} \right] \\
+ \frac{\beta_{k}\tau_{k}^{2}}{2} \left[\|\tilde{y}^{k} - y^{\star}\|^{2} - \|\tilde{y}^{k+1} - y^{\star}\|^{2} \right] + \frac{\tau_{k}}{2\eta_{k}} \left[\|\hat{\lambda}^{k} - \lambda\|^{2} - \|\hat{\lambda}^{k+1} - \lambda\|^{2} \right] \\
+ \frac{\eta_{k}\tau_{k}}{2} \|\tilde{s}^{k+1}\|^{2} - \frac{\rho_{k}\tau_{k}^{2}}{2} \|\tilde{s}^{k+1/2}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} \\
- \frac{(1-\tau_{k})}{2} \left[\rho_{k-1} - \rho_{k}(1-\tau_{k}) \right] \|s^{k}\|^{2}.$$
(29)

Finally, by using $||u||^2 - 2||v||^2 \le 2||u - v||^2$, it is straightforward to show that if $2\eta_k \le \rho_k \tau_k$, then

$$\frac{\eta_k \tau_k}{2} \|\tilde{s}^{k+1}\|^2 - \frac{\rho_k \tau_k^2}{2} \|\tilde{s}^{k+1/2}\|^2 \le \frac{L_B \rho_k \tau_k^2}{2} \|\tilde{y}^{k+1} - \tilde{y}^k\|^2.$$

Therefore, substituting this estimate into (29), we obtain (24).

From Lemma B.2 we need to derive rules for updating the parameters τ_k , ρ_k , γ_k , β_k , and η_k . These updates are guided by the following lemma, which is shown in Algorithm I.

Lemma B.3. If the parameters τ_k , ρ_k , γ_k , β_k , and η_k are updated as

$$\tau_{k} := \frac{1}{k+1}, \ \rho_{k} := \rho_{0}(k+1), \ \beta_{k} := 2L_{B}\rho_{0}(k+1),$$

$$\eta_{k} := \frac{\rho_{0}}{2}, \ and \ 0 \le \gamma_{k+1} \le \left(\frac{k+2}{k+1}\right)\gamma_{k},$$
(30)

then the sequence $\{(z^k, \tilde{z}^k)\}$ satisfies

$$2kS_{\rho_{k-1}}(z^{k},\hat{\lambda}^{0}) + \frac{\gamma_{k}}{k+1} \|\tilde{x}^{k} - x^{\star}\|^{2} + 2\rho_{0}L_{B}\|\tilde{y}^{k} - y^{\star}\|^{2} \leq \gamma_{0}\|x^{0} - x^{\star}\|^{2} + 2\rho_{0}L_{B}\|y^{0} - y^{\star}\|^{2}, \quad (31)$$

where $S_{\rho_{k-1}}(z^{k},\hat{\lambda}^{0}) := \mathcal{L}_{\rho_{k-1}}(z^{k},\hat{\lambda}^{0}) - F^{\star}, \quad and \quad \rho_{0} > 0 \quad and \quad \gamma_{0} \geq 0 \quad are \quad given.$

Proof. First, we choose to update τ_k as $\tau_k = \frac{1}{k+1}$. Then, $\tau_0 = 1$. From the last term of (24), we impose $\rho_{k-1} - \rho_k(1 - \tau_k) = 0$. This suggests us to update ρ_k as $\rho_k = \rho_0(k+1)$.

We also choose $\beta_k := 2L_B\rho_k$ and $\eta_k := \frac{\rho_k\tau_k}{2}$ to guarantee $\beta_k - 2\rho_kL_B \ge 0$ and $2\eta_k \le \rho_k\tau_k$, respectively. Using the update of τ_k and ρ_k , we can easily show that $\beta_k = 2L_B\rho_0(k+1)$ and $\eta_k := \frac{\rho_0}{2}$ as shown in (30).

Using the update (30) and $\lambda := \hat{\lambda}^0$ into (24) with $S_k := \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^0) - F^\star$, we have

$$\begin{aligned} (k+1)S_{k+1} + \frac{1}{\rho_0} \|\hat{\lambda}^{k+1} - \hat{\lambda}^0\|^2 &+ \frac{\gamma_k}{2(k+1)} \|\tilde{x}^{k+1} - x^\star\|^2 + \rho_0 L_B \|\tilde{y}^{k+1} - y^\star\|^2 \le kS_k \\ &+ \frac{1}{\rho_0} \|\hat{\lambda}^k - \hat{\lambda}^0\|^2 + \frac{\gamma_k}{2(k+1)} \|\tilde{x}^k - x^\star\|^2 + \rho_0 L_B \|\tilde{y}^k - y^\star\|^2. \end{aligned}$$

We also choose $\frac{\gamma_{k+1}}{k+2} \leq \frac{\gamma_k}{k+1}$. Hence, by induction, the last inequality leads to

$$kS_k + \frac{1}{\rho_0} \|\hat{\lambda}^k - \hat{\lambda}^0\|^2 + \frac{\gamma_k}{2(k+1)} \|\tilde{x}^k - x^\star\|^2 + \rho_0 L_B \|\tilde{y}^k - y^\star\|^2 \le \frac{\gamma_0}{2} \|\tilde{x}^0 - x^\star\|^2 + \rho_0 L_B \|\tilde{y}^0 - y^\star\|^2.$$

Since $\tilde{x}^0 = x^0$ and $\tilde{y}^0 = y^0$, by ignoring the term $\frac{1}{\rho_0} \|\hat{\lambda}^k - \hat{\lambda}^0\|^2$, the last inequality leads to (31). Finally, the condition $\frac{\gamma_{k+1}}{k+2} \leq \frac{\gamma_k}{k+1}$ holds if $0 \leq \gamma_{k+1} \leq \left(\frac{k+2}{k+1}\right)\gamma_k$.

The proof of Theorem 3.1 Let $R_0^2 := \gamma_0 ||x^0 - x^*||^2 + 2\rho_0 L_B ||y^0 - y^*||^2$. From (31), we have $S_{\rho_{k-1}}(z^k, \hat{\lambda}^0) = \mathcal{L}_{\rho_k}(z^k, \hat{\lambda}^0) - F^* \leq \frac{R_0^2}{2k}$. Moreover, $\rho_{k-1} = \rho_0 k$. Substituting these two expressions into (6), we obtain (8).

C Lower bound on convergence rates of Algorithm 1

In order to show that the convergence rate of Algorithm $\boxed{1}$ is optimal, we consider the following example studied in $\boxed{28}$:

$$\min_{z:=[x,y]} \Big\{ F(z) := f(x) + g(y) \mid x - y = 0 \Big\},\tag{32}$$

which is a split reformulation of an additive composite objective function F(x) = f(x) + g(x). Algorithm [] for solving (32) can be cast as a special case of the following generic scheme:

$$\begin{cases} (\hat{y}^{k}, \hat{\lambda}^{k}) & \text{are linear combinations of previous iterates} \\ x^{k+1} & := \operatorname{prox}_{\gamma_{k}f} \left(\hat{x}^{k} - \gamma_{k}^{-1} \hat{\lambda}^{k} \right) \\ (\tilde{x}^{k+1}, \hat{\lambda}^{k+1}) & \text{are linear combinations of computed iterates} \\ y^{k+1} & := \operatorname{prox}_{\beta_{k}g} \left(\tilde{x}^{k+1} - \beta_{k}^{-1} \hat{\lambda}^{k+1} \right). \end{cases}$$
(33)

Then, there exist f and g defined on $\{x \in \mathbb{R}^{6k+5} | ||x|| \le B\}$ which are convex and L_f -Lipschitz continuous such that the general primal-dual scheme (33) exhibits a lower bound:

$$F(\breve{x}^k) \ge \frac{L_f B}{8(k+1)},$$

where $\check{x}^k := \sum_{j=1}^k \alpha_j x^j + \sum_{l=1}^k \sigma_l y^l$ for any α_j and σ_l with $j, l = 1, \dots, k$. This example can be found in [14] Proposition 5]. Consequently, Algorithm [1] has a lower bound convergence rate of $\mathcal{O}\left(\frac{1}{k}\right)$. Hence, the $\mathcal{O}\left(\frac{1}{k}\right)$ convergence rate stated in Theorem [3.1] is optimal within a constant factor.

D Convergence analysis of Algorithm 2

Lemmas D.1 and D.2 provide key estimates to prove the convergence of Algorithm 2. Lemma D.1. Assume that \mathcal{L}_{ρ} is defined by (5), and ℓ_{ρ}^{k} is defined by (14). Let \mathcal{Q}_{ρ}^{k} be defined as

$$\mathcal{Q}_{\rho_{k}}^{k}(y) := \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}), y - \hat{y}^{k} \rangle + \frac{\rho_{k}L_{B}}{2} \|y - \hat{y}^{k}\|^{2}.$$
(34)

Then, $\phi_{\rho_k}(x^{k+1}, y, \hat{\lambda}^k) \leq \mathcal{Q}^k_{\rho_k}(y)$ for any $y \in \mathbb{R}^{\hat{p}}$.

Let $(x^{k+1}, \tilde{z}^{k+1}, \hat{z}^k, \hat{\lambda}^k)$ be computed by Algorithm 2 and $\check{y}^{k+1} := (1 - \tau_k)y^k + \tau_k \tilde{y}^{k+1}$. Then, for any $z \in \operatorname{dom}(F)$, we have

$$\begin{aligned}
\check{\mathcal{L}}_{\rho_{k}}^{k+1} &:= f(x^{k+1}) + g(\check{y}^{k+1}) + \mathcal{Q}_{\rho_{k}}^{k}(\check{y}^{k+1}) \leq (1 - \tau_{k}) \left[F(z^{k}) + \ell_{\rho_{k}}^{k}(z^{k}) \right] \\
&+ \tau_{k} \left[F(z) + \ell_{\rho_{k}}^{k}(z) \right] + \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\check{x}^{k} - x\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\check{x}^{k+1} - x\|^{2} - \frac{\gamma_{k}}{2} \|x^{k+1} - \hat{x}^{k}\|^{2} \\
&+ \frac{\beta_{k}\tau_{k}^{2}}{2} \|\check{y}^{k} - y\|^{2} - \frac{\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k}}{2} \|\check{y}^{k+1} - y\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2} \|\check{y}^{k+1} - \check{y}^{k}\|^{2}.
\end{aligned}$$
(35)

Proof. Since $\hat{z}^k = (1 - \tau_k) z^k + \tau_k \tilde{z}^k$, we have $(1 - \tau_k) x^k + \tau_k \tilde{x}^{k+1} - x^{k+1} = 0$ and $\breve{y}^{k+1} - \hat{y}^k = \tau_k (\tilde{y}^{k+1} - \tilde{y}^k)$. Using these expressions, \breve{y}^{k+1} , $\ell_{\rho_k}^k$ in (14), and $\mathcal{Q}_{\rho_k}^k$ in (34), we can derive

$$\mathcal{Q}_{\rho_{k}}^{k}(\check{y}^{k+1}) = \phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}),\check{y}^{k+1} - \hat{y}^{k} \rangle + \frac{\rho_{k}L_{B}}{2} \|\check{y}^{k+1} - \hat{y}^{k}\|^{2} \\
= (1-\tau_{k}) \left[\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), x^{k} - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), y^{k} - \hat{y}^{k} \rangle \right] \\
+ \tau_{k} \left[\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{x}^{k+1} - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{y}^{k+1} - \hat{y}^{k} \rangle \right] \\
+ \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), (1-\tau_{k})x^{k} + \tau_{k}\tilde{x}^{k+1} - x^{k+1} \rangle + \frac{\rho_{k}\tau_{k}^{2}L_{B}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} \\
\overset{(\mathbf{I})}{=} (1-\tau_{k})\ell_{\rho_{k}}^{k}(z^{k}) + \tau_{k}\ell_{\rho_{k}}^{k}(\tilde{z}^{k+1}) + \frac{\rho_{k}\tau_{k}^{2}L_{B}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2}.$$
(36)

By the convexity of f and $x^{k+1} - (1 - \tau_k)x^k = \tau_k \tilde{x}^{k+1}$, for any $x \in \text{dom}(f)$ and $\nabla f(x^{k+1}) \in \partial f(x^{k+1})$, we can estimate that

$$f(x^{k+1}) \leq f((1-\tau_k)x^k + \tau_k x) + \langle \nabla f(x^{k+1}), x^{k+1} - (1-\tau_k)x^k - \tau_k x \rangle \leq (1-\tau_k)f(x^k) + \tau_k f(x) + \tau_k \langle \nabla f(x^{k+1}), \tilde{x}^{k+1} - x \rangle,$$
(37)

Since $\check{y}^{k+1} := (1 - \tau_k)y^k + \tau_k \tilde{y}^{k+1}$, by μ_g -convexity of g, for any $y \in \operatorname{dom}(g)$ and $\nabla g(\tilde{y}^{k+1}) \in \partial g(\tilde{y}^{k+1})$, we have

$$g(\check{y}^{k+1}) \leq (1 - \tau_k)g(y^k) + \tau_k g(\tilde{y}^{k+1}) - \frac{\tau_k(1 - \tau_k)\mu_g}{2} \|\tilde{y}^{k+1} - y^k\|^2 \\ \leq (1 - \tau_k)g(y^k) + \tau_k g(y) + \tau_k \langle \nabla g(\tilde{y}^{k+1}), \tilde{y}^{k+1} - y \rangle - \frac{\tau_k \mu_g}{2} \|\tilde{y}^{k+1} - y\|^2.$$
(38)

Next, note that

$$\ell_{\rho_{k}}^{k}(\tilde{z}^{k+1}) = \phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{x}^{k+1} - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{y}^{k+1} - \hat{y}^{k} \rangle$$

$$= \phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), x - x^{k+1} \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), y - \hat{y}^{k} \rangle$$

$$+ \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{x}^{k+1} - x \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{y}^{k+1} - y \rangle$$

$$= \ell_{\rho_{k}}^{k}(z) + \langle \nabla_{x}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{x}^{k+1} - x \rangle + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1},\hat{\lambda}^{k}), \tilde{y}^{k+1} - y \rangle.$$
(39)

Combining (36), (37), (38), and (39), for any $z := (x, y) \in \text{dom}(F)$, we can derive

$$\begin{aligned}
\check{\mathcal{L}}_{\rho_{k}}^{k+1} & \stackrel{\textbf{(i4)}}{=} f(x^{k+1}) + g(\check{y}^{k+1}) + \mathcal{Q}_{\rho_{k}}^{k}(\check{y}^{k+1}) \\
& \stackrel{\textbf{(i7)}, \textbf{(i8)}}{\leq} (1 - \tau_{k}) \left[F(z^{k}) + \ell_{\rho_{k}}^{k}(z^{k}) \right] + \tau_{k} \left[F(z) + \ell_{\rho_{k}}^{k}(z) \right] \\
& + \tau_{k} \langle \nabla f(x^{k+1}) + \nabla_{x} \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}), \check{x}^{k+1} - x \rangle + \tau_{k} \langle \nabla g(\check{y}^{k+1}) + \nabla_{y} \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}), \check{y}^{k+1} - y \rangle \\
& - \frac{\tau_{k} \mu_{g}}{2} \| \check{y}^{k+1} - y \|^{2} + \frac{\rho_{k} \tau_{k}^{2} L_{B}}{2} \| \check{y}^{k+1} - \check{y}^{k} \|^{2}.
\end{aligned}$$
(40)

Next, from the optimality condition of the x- and y_i -subproblems in Algorithm 2, we can show that

$$\begin{cases} \nabla f(x^{k+1}) + \nabla_x \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k) &= \gamma_k(\hat{x}^k - x^{k+1}), \quad \nabla f(x^{k+1}) \in \partial f(x^{k+1}), \\ \nabla g(\tilde{y}^{k+1}) + \nabla_y \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^k) &= \tau_k \beta_k(\tilde{y}^k - \tilde{y}^{k+1}), \quad \nabla g(\tilde{y}^{k+1}) \in \partial g(\tilde{y}^{k+1}). \end{cases}$$
(41)

Moreover, we also have

$$2\tau_{k}\langle \hat{x}^{k} - x^{k+1}, \tilde{x}^{k+1} - x \rangle = \tau_{k}^{2} \|\tilde{x}^{k} - x\|^{2} - \tau_{k}^{2} \|\tilde{x}^{k+1} - x\|^{2} - \|x^{k+1} - \hat{x}^{k}\|^{2}$$

$$2\langle \tilde{y}^{k} - \tilde{y}^{k+1}, \tilde{y}^{k+1} - y \rangle = \|\tilde{y}^{k} - y\|^{2} - \|\tilde{y}^{k+1} - y\|^{2} - \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2}.$$
(42)

Using (41) and (42) into (40), we can further derive

$$\begin{split} \breve{\mathcal{L}}_{\rho_{k}}^{k+1} &\stackrel{\text{(55)}}{\leq} (1-\tau_{k}) \left[F(z^{k}) + \ell_{\rho_{k}}^{k}(z^{k}) \right] + \tau_{k} \left[F(z) + \ell_{\rho_{k}}^{k}(z) \right] - \frac{\tau_{k}\mu_{g}}{2} \| \tilde{y}^{k+1} - y \|^{2} \\ &+ \tau_{k} \gamma_{k} \langle \hat{x}^{k} - x^{k+1}, \tilde{x}^{k+1} - x \rangle + \tau_{k}^{2} \beta_{k} \langle \tilde{y}^{k} - \tilde{y}^{k+1}, \tilde{y}^{k+1} - y \rangle + \frac{\rho_{k} \tau_{k}^{2} L_{B}}{2} \| \tilde{y}^{k+1} - \tilde{y}^{k} \|^{2} \\ &\stackrel{\text{(42)}}{\leq} (1-\tau_{k}) \left[F(z^{k}) + \ell_{\rho_{k}}^{k}(z^{k}) \right] + \tau_{k} \left[F(z) + \ell_{\rho_{k}}^{k}(z) \right] \\ &+ \frac{\gamma_{k} \tau_{k}^{2}}{2} \| \tilde{x}^{k} - x \|^{2} - \frac{\gamma_{k} \tau_{k}^{2}}{2} \| \tilde{x}^{k+1} - x \|^{2} - \frac{\gamma_{k}}{2} \| x^{k+1} - \hat{x}^{k} \|^{2} \\ &+ \frac{\beta_{k} \tau_{k}^{2}}{2} \| \tilde{y}^{k} - y \|^{2} - \frac{\left(\beta_{k} \tau_{k}^{2} + \mu_{g} \tau_{k}\right)}{2} \| \tilde{y}^{k+1} - y \|^{2} - \frac{\left(\beta_{k} - \rho_{k} L_{B}\right) \tau_{k}^{2}}{2} \| \tilde{y}^{k+1} - \tilde{y}^{k} \|^{2}, \end{split}$$
 which is exactly (35).

which is exactly (35).

Lemma D.2. Let $\{(z^k, \hat{z}^k, \hat{z}^k, \hat{\lambda}^k)\}$ be the sequence generated by Algorithm 2. Then

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \leq (1 - \tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k}, \hat{\lambda}^{k}) + \tau_{k}F(z^{\star}) - \frac{(1 - \tau_{k})}{2}(\rho_{k-1} - \rho_{k}(1 - \tau_{k}))\|s^{k}\|^{2} \\
+ \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k} - x^{\star}\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k+1} - x^{\star}\|^{2} - \frac{\gamma_{k}}{2}\|x^{k+1} - \hat{x}^{k}\|^{2} \\
+ \frac{\beta_{k}\tau_{k}^{2}}{2}\|\tilde{y}^{k} - y^{\star}\|^{2} - \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2}\|\tilde{y}^{k+1} - y^{\star}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2}\|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} \\
- \langle\hat{\lambda}^{k} - \hat{\lambda}^{0}, B(y^{k+1} - \breve{y}^{k+1})\rangle - \frac{\rho_{k}L_{B}}{2}\|y^{k+1} - \breve{y}^{k+1}\|^{2} - \frac{\rho_{k}\tau_{k}^{2}}{2}\|\tilde{s}^{k+1/2}\|^{2},$$
(43)

where γ_k , β_k , and ρ_k are positive parameters, $\tau_k \in [0,1]$, $s^k := Ax^k + By^k - c$, $\tilde{s}^{k+1/2} := A\tilde{x}^{k+1} + B\tilde{x}^k - c$, and $\check{y}^{k+1} := (1 - \tau_k)y^k + \tau_k \tilde{y}^{k+1}$.

Proof. Using (35) with $z = z^*$, and then combining the result with (15), we obtain

$$\begin{split} \check{\mathcal{L}}_{\rho_{k}}^{k+1} &\leq (1-\tau_{k})\mathcal{L}_{\rho_{k}}(z^{k},\hat{\lambda}^{k}) + \tau_{k}F(z^{\star}) - \frac{(1-\tau_{k})\rho_{k}}{2} \|\hat{s}^{k+1} - s^{k}\|^{2} - \frac{\rho_{k}\tau_{k}}{2} \|\hat{s}^{k+1}\|^{2} \\ &+ \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k} - x^{\star}\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k+1} - x^{\star}\|^{2} - \frac{\gamma_{k}}{2} \|x^{k+1} - \hat{x}^{k}\|^{2} \\ &+ \frac{\beta_{k}\tau_{k}^{2}}{2} \|\tilde{y}^{k} - y\|^{2} - \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2} \|\tilde{y}^{k+1} - y\|^{2} - \frac{(\beta_{k}-\rho_{k}L_{B})\tau_{k}^{2}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2}. \end{split}$$

Next, using $\mathcal{L}_{\rho_k}(z^k, \hat{\lambda}^k) = \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^k) + \frac{(\rho_k - \rho_{k-1})}{2} \|s^k\|^2$ in the last inequality, and then combining the result with (26), we obtain

$$\begin{aligned} \breve{\mathcal{L}}_{\rho_{k}}^{k+1} &\leq (1-\tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k},\hat{\lambda}^{k}) + \tau_{k}F(z^{\star}) - \frac{(1-\tau_{k})(\rho_{k-1}-\rho_{k}(1-\tau_{k}))}{2} \|s^{k}\|^{2} - \frac{\rho_{k}\tau_{k}^{2}}{2} \|\tilde{s}^{k+1/2}\|^{2} \\ &+ \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k} - x^{\star}\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k+1} - x^{\star}\|^{2} - \frac{\gamma_{k}}{2} \|x^{k+1} - \hat{x}^{k}\|^{2} \\ &+ \frac{\beta_{k}\tau_{k}^{2}}{2} \|\tilde{y}^{k} - y^{\star}\|^{2} - \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2} \|\tilde{y}^{k+1} - y^{\star}\|^{2} - \frac{(\beta_{k}-\rho_{k}L_{B})\tau_{k}^{2}}{2} \|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2}. \end{aligned}$$
(44)

Now, we consider two cases corresponding to the two options at Step 11 of Algorithm 2

Option 1: If $y^{k+1} = \breve{y}^{k+1}$, then we have

$$\begin{split} \mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) &= f(x^{k+1}) + g(y^{k+1}) + \phi_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{k}) \\ \stackrel{\textcircled{12}}{\leq} f(x^{k+1}) + g(\breve{y}^{k+1}) + \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}), \breve{y}^{k+1} - \hat{y}^{k} \rangle \\ &+ \frac{\rho_{k}L_{B}}{2} \|\breve{y}^{k+1} - \hat{y}^{k}\|^{2} \\ &= f(x^{k+1}) + g(\breve{y}^{k+1}) + \mathcal{Q}_{\rho_{k}}^{k}(\breve{y}^{k+1}) \\ &= \breve{\mathcal{L}}_{\rho_{k}}^{k+1} \\ &= \breve{\mathcal{L}}_{\rho_{k}}^{k+1} - \langle \hat{\lambda}^{k} - \hat{\lambda}^{0}, B(y^{k+1} - \breve{y}^{k+1}) \rangle - \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \breve{y}^{k+1}\|^{2}. \end{split}$$

Here, the last relation follows from the fact that $\langle \hat{\lambda}^k - \hat{\lambda}^0, B(y^{k+1} - \breve{y}^{k+1}) \rangle + \frac{\rho_k L_B}{2} ||y^{k+1} - \breve{y}^{k+1}||^2 = 0$ since $y^{k+1} = \breve{y}^{k+1}$. Combining the last estimate and (44), we obtain the key estimate (43).

Option 2: If we choose
$$y_i^{k+1} := \operatorname{prox}_{g_i/(\rho_k L_B)} \left(\hat{y}_i^k - \frac{1}{\rho_k L_B} B_i^\top \left(\rho_k r^k - \hat{\lambda}^0 \right) \right)$$
, then we write it as $y_i^{k+1} = \operatorname{argmin}_{y_i} \left\{ g_i(y_i) + \langle \nabla_{y_i} \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^0), y_i - \hat{y}_i^k \rangle + \frac{\rho_k L_B}{2} \|y_i - \hat{y}_i^k\|^2 \right\}$ for all $i = 1, \cdots, m$.

From the optimality condition of these y_i -subproblems, one can easily show that

$$g(y^{k+1}) + \langle \nabla_y \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^0), y^{k+1} - \hat{y}^k \rangle + \frac{\rho_k L_B}{2} \|y^{k+1} - \hat{y}^k\|^2 \\ \leq g(\check{y}^{k+1}) + \langle \nabla_y \phi_{\rho_k}(\hat{z}^{k+1}, \hat{\lambda}^0), \check{y}^{k+1} - \hat{y}^k \rangle + \frac{\rho_k L_B}{2} \|\check{y}^{k+1} - \hat{y}^k\|^2 - \frac{\rho_k L_B}{2} \|y^{k+1} - \check{y}^{k+1}\|^2.$$

Using $\phi_{\rho_k}(x^{k+1}, \check{y}^{k+1}, \hat{\lambda}^k) \leq \mathcal{Q}_{\rho_k}^k(\check{y}^{k+1})$ from Lemma D.1 and the last inequality, we can derive
 $\mathcal{L}_{-}(z^{k+1}, \hat{\lambda}^k) = -f(z^{k+1}) + g(z^{k+1}) + \phi_{-}(z^{k+1}, \hat{\lambda}^k)$

$$\begin{split} \mathcal{L}_{\rho_{k}}(z = -, \Lambda^{-}) &= f(x = -) + g(g = -) + \phi_{\rho_{k}}(z = -, \Lambda^{-}) \\ &\stackrel{\text{ID}}{\leq} f(x^{k+1}) + g(y^{k+1}) + \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}), y^{k+1} - \hat{y}^{k} \rangle \\ &+ \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} \\ &= f(x^{k+1}) + \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}) - \langle B^{\top}(\hat{\lambda}^{k} - \hat{\lambda}^{0}), y^{k+1} - \hat{y}^{k} \rangle \\ &+ g(y^{k+1}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{0}), y^{k+1} - \hat{y}^{k} \rangle + \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \hat{y}^{k}\|^{2} \\ &\leq f(x^{k+1}) + \phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{k}) - \langle B^{\top}(\hat{\lambda}^{k} - \hat{\lambda}^{0}), y^{k+1} - \hat{y}^{k} \rangle - \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \check{y}^{k+1}\|^{2} \\ &+ g(\check{y}^{k+1}) + \langle \nabla_{y}\phi_{\rho_{k}}(\hat{z}^{k+1}, \hat{\lambda}^{0}), \check{y}^{k+1} - \hat{y}^{k} \rangle + \frac{\rho_{k}L_{B}}{2} \|\check{y}^{k+1} - \hat{y}^{k}\|^{2} \\ &\leq \check{\mathcal{L}}_{\rho_{k}}^{k+1} - \frac{\rho_{k}L_{B}}{2} \|y^{k+1} - \check{y}^{k+1}\|^{2} - \langle \hat{\lambda}^{k} - \hat{\lambda}^{0}, B(y^{k+1} - \check{y}^{k+1}) \rangle. \end{split}$$
Combining this estimate and (44), we obtain the key estimate (43).

С

Our next step is to show how to choose the parameters $\gamma_k, \beta_k, \rho_k$, and $\tau_k \in [0, 1]$ such that we can obtain a convergence property of $\mathcal{L}_{\rho_k}(\cdot)$.

Lemma D.3. If the parameters
$$\tau_k$$
, ρ_k , γ_k , β_k , and η_k are updated as

$$\tau_{k} := \frac{1}{2} \tau_{k-1} \left((\tau_{k-1}^{2} + 4)^{1/2} - \tau_{k-1} \right), \quad \rho_{k} := \frac{\rho_{0}}{\tau_{k}^{2}},$$

$$\gamma_{k} := \gamma_{0} \ge 0, \quad \beta_{k} := 2L_{B}\rho_{k}, \quad and \quad \eta_{k} := \frac{\rho_{k}\tau_{k}}{2},$$

$$(45)$$

with $\tau_0 := 1$ and $\rho_0 \in \left(0, \frac{\mu_g}{4L_B}\right)$, then

$$\mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^0) - F(z^\star) \le \frac{\tau_{k-1}^2}{2} \left[\gamma_0 \| \tilde{x}^0 - x^\star \|^2 + 2\rho_0 L_B \| \tilde{y}^0 - y^\star \|^2 \right].$$
(46)

$$\begin{aligned} \text{Proof. Since } \mathcal{L}_{\rho}(z,\hat{\lambda}^{0}) &= \mathcal{L}_{\rho}(z,\hat{\lambda}^{k}) + \langle \hat{\lambda}^{k} - \hat{\lambda}^{0}, Ax + By - c \rangle, \text{ from (43), we have} \\ \mathcal{L}_{\rho_{k}}(z^{k+1},\hat{\lambda}^{0}) &\leq (1-\tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k},\hat{\lambda}^{0}) + \tau_{k}F(z^{*}) - \frac{(1-\tau_{k})}{2}(\rho_{k-1} - \rho_{k}(1-\tau_{k})) \|s^{k}\|^{2} \\ &+ \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k} - x^{*}\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k+1} - x^{*}\|^{2} - \frac{\gamma_{k}}{2}\|x^{k+1} - \hat{x}^{k}\|^{2} \\ &+ \frac{\beta_{k}\tau_{k}^{2}}{2}\|\tilde{y}^{k} - y^{*}\|^{2} - \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2}\|\tilde{y}^{k+1} - y^{*}\|^{2} - \frac{(\beta_{k} - \rho_{k}L_{B})\tau_{k}^{2}}{2}\|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} \\ &+ \langle \hat{\lambda}^{k} - \hat{\lambda}^{0}, Ax^{k+1} + By^{k+1} - c - (1-\tau_{k})(Ax^{k} + By^{k} - c) \rangle \\ &- \langle \hat{\lambda}^{k} - \hat{\lambda}^{0}, B(y^{k+1} - \check{y}^{k+1}) \rangle - \frac{\rho_{k}L_{B}}{2}\|y^{k+1} - \check{y}^{k+1}\|^{2} - \frac{\rho_{k}\tau_{k}^{2}}{2}\|\tilde{s}^{k+1/2}\|^{2}. \end{aligned}$$

Now, using $\check{y}^{k+1} - (1 - \tau_k)y^k = \tau_k \tilde{y}^{k+1}, x^{k+1} - (1 - \tau_k)x^k = \tau_k \tilde{x}^{k+1}$, and the dual update $\hat{\lambda}^{k+1} := \hat{\lambda}^k - \eta_k (A \tilde{x}^{k+1} + B \tilde{y}^{k+1} - c) = \hat{\lambda}^k - \eta_k \tilde{s}^{k+1}$, we can show that

$$\begin{split} M_k &:= \langle \hat{\lambda}^k - \hat{\lambda}^0, Ax^{k+1} + By^{k+1} - c - (1 - \tau_k)(Ax^k + By^k - c) - B(y^{k+1} - \breve{y}^{k+1}) \rangle \\ &= \langle \hat{\lambda}^k - \hat{\lambda}^0, Ax^{k+1} + B\breve{y}^{k+1} - c - (1 - \tau_k)(Ax^k + By^k - c) \rangle \\ &= \tau_k \langle \hat{\lambda}^k - \hat{\lambda}^0, A\breve{x}^{k+1} + B\breve{y}^{k+1} - c \rangle \\ &= \frac{\tau_k}{\eta_k} \langle \hat{\lambda}^k - \hat{\lambda}^0, \hat{\lambda}^k - \hat{\lambda}^{k+1} \rangle = \frac{\tau_k}{2\eta_k} \left[\|\hat{\lambda}^k - \hat{\lambda}^0\|^2 - \|\hat{\lambda}^{k+1} - \hat{\lambda}^0\|^2 \right] + \frac{\eta_k \tau_k}{2} \|\breve{s}^{k+1}\|^2. \end{split}$$

Using this estimate of M_k into (47), similar to (29), if $2\eta_k \leq \rho_k \tau_k$, then we can show that

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{0}) \leq (1 - \tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k}, \hat{\lambda}^{0}) + \tau_{k}F(z^{*}) - \frac{(1 - \tau_{k})}{2}(\rho_{k-1} - \rho_{k}(1 - \tau_{k}))\|s^{k}\|^{2} \\
+ \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k} - x^{*}\|^{2} - \frac{\gamma_{k}\tau_{k}^{2}}{2}\|\tilde{x}^{k+1} - x^{*}\|^{2} + \frac{\beta_{k}\tau_{k}^{2}}{2}\|\tilde{y}^{k} - y^{*}\|^{2} \\
- \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2}\|\tilde{y}^{k+1} - y^{*}\|^{2} - \frac{(\beta_{k} - 2\rho_{k}L_{B})\tau_{k}^{2}}{2}\|\tilde{y}^{k+1} - \tilde{y}^{k}\|^{2} \\
- \frac{\rho_{k}L_{B}}{2}\|y^{k+1} - \check{y}^{k+1}\|^{2} + \frac{\tau_{k}}{2\eta_{k}}\left[\|\hat{\lambda}^{k} - \hat{\lambda}^{0}\|^{2} - \|\hat{\lambda}^{k+1} - \hat{\lambda}^{0}\|^{2}\right].$$
(48)

Let us first update τ_k as $\tau_k = \frac{1}{2}\tau_{k-1}\left((\tau_{k-1}^2+4)^{1/2}-\tau_{k-1}\right)$ with $\tau_0 = 1$, and $\rho_k = \frac{\rho_{k-1}}{1-\tau_k}$ as in (45). It is not hard to show that $\frac{1}{k+1} \leq \tau_k \leq \frac{2}{k+2}$ and $\rho_k = \frac{\rho_0}{\tau_k^2}$. Moreover, $\prod_{i=1}^{k-1}(1-\tau_i) = \frac{1}{\tau_{k-1}^2} \leq \frac{4}{(k+1)^2}$. To guarantee $\beta_k \geq 2L_B\rho_k$ and $2\eta_k \leq \rho_k\tau_k$, we can update $\beta_k := 2L_B\rho_k$ and $\eta_k := \frac{\rho_k\tau_k}{2}$. Therefore, (48) can be simplified as

$$\mathcal{L}_{\rho_{k}}(z^{k+1}, \hat{\lambda}^{0}) \leq (1 - \tau_{k})\mathcal{L}_{\rho_{k-1}}(z^{k}, \hat{\lambda}^{0}) + \tau_{k}F(z^{\star}) + \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k} - x^{\star}\|^{2}
- \frac{\gamma_{k}\tau_{k}^{2}}{2} \|\tilde{x}^{k+1} - x^{\star}\|^{2} + \frac{\beta_{k}\tau_{k}^{2}}{2} \|\tilde{y}^{k} - y^{\star}\|^{2} - \frac{(\beta_{k}\tau_{k}^{2} + \mu_{g}\tau_{k})}{2} \|\tilde{y}^{k+1} - y^{\star}\|^{2}
+ \frac{1}{\rho_{k}} \left[\|\hat{\lambda}^{k} - \hat{\lambda}^{0}\|^{2} - \|\hat{\lambda}^{k+1} - \hat{\lambda}^{0}\|^{2} \right].$$
(49)

Now, let us define

$$A_k := \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^0) - F^\star + \frac{1}{\rho_k} \|\hat{\lambda}^k - \hat{\lambda}^0\|^2 + \frac{\gamma_{k-1}\tau_{k-1}^2}{2} \|\tilde{x}^k - x^\star\|^2 + \frac{(\beta_{k-1}\tau_{k-1}^2 + \mu_g\tau_{k-1})}{2} \|\tilde{y}^k - y^\star\|^2.$$

Assume that

$$\frac{1}{\rho_k} \le \frac{1}{\rho_{k-1}}, \quad \frac{\beta_k \tau_k^2}{1 - \tau_k} \le \beta_{k-1} \tau_{k-1}^2 + \mu_g \tau_{k-1} \quad \text{and} \quad \frac{\gamma_k \tau_k^2}{1 - \tau_k} \le \gamma_{k-1} \tau_{k-1}^2.$$
(50)

Then, (49) implies $A_{k+1} \leq (1 - \tau_k)A_k$. By induction, and $\tau_0 = 1$, we can show that

$$A_k \le \frac{1}{2} \left(\prod_{i=1}^{k-1} (1-\tau_i) \right) \left[\gamma_0 \| \tilde{x}^0 - x^\star \|^2 + \beta_0 \| \tilde{y}^0 - y^\star \|^2 \right],$$

Since $\prod_{i=1}^{k-1} (1 - \tau_i) = \tau_{k-1}^2$ and $\beta_0 = 2L_B \rho_0$, the last inequality implies $S_{\rho_{k-1}}(z^k, \hat{\lambda}^0) := \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^0) - F(z^\star) \le \frac{\tau_{k-1}^2}{2} [\gamma_0 \| \tilde{x}^0 - x^\star \|^2 + 2\rho_0 L_B \| \tilde{y}^0 - y^\star \|^2]$, which proves (46).

Since $\beta_k := 2L_B\rho_k$, the condition $\frac{\beta_k \tau_k^2}{1-\tau_k} \leq \beta_{k-1}\tau_{k-1}^2 + \mu_g \tau_{k-1}$ becomes $L_B\rho_k \frac{\tau_k^2}{1-\tau_k} \leq L_B\rho_{k-1}\tau_{k-1}^2 + \frac{\mu_g}{2}\tau_{k-1}$. Using $\rho_k = \frac{\rho_0}{\tau_k^2}$ and $\frac{\tau_k^2}{1-\tau_k} = \tau_{k-1}^2$, the last condition holds if $L_B\rho_0 \frac{\tau_{k-1}}{\tau_k} \leq \frac{\mu_g}{2}$. Since $1 \leq \frac{\tau_{k-1}}{\tau_k} \leq 2$, $L_B\rho_0 \frac{\tau_{k-1}}{\tau_k} \leq \frac{\mu_g}{2}$ holds if $4L_B\rho_0 \leq \mu_g$. This condition leads to $\rho_0 \leq \frac{\mu_g}{4L_B}$.

Next, the condition $\frac{\gamma_k \tau_k^2}{1 - \tau_k} \leq \gamma_{k-1} \tau_{k-1}^2$ shows that we can choose γ_k as $\gamma_k \leq \gamma_{k-1}$. This condition holds if we fix $\gamma_k := \gamma_0 \geq 0$. Now, we find the condition for η_k in (45). Since $\rho_k = \frac{\rho_0}{\tau_k^2}$, the condition $\frac{1}{\rho_k} \leq \frac{1}{\rho_{k-1}}$ in (50) is automatically satisfied.

The proof of Theorem 3.2 Let $R_0^2 := \gamma_0 \|x^0 - x^*\|^2 + 2\rho_0 L_B \|y^0 - y^*\|^2$. Since $\tilde{x}^0 = x^0$ and $\tilde{y}^0 = y^0$, from (46), we have $S_{\rho_{k-1}}(z^k, \hat{\lambda}^0) = \mathcal{L}_{\rho_{k-1}}(z^k, \hat{\lambda}^0) - F^* \leq \tau_{k-1}^2 R_0^2 \leq \frac{2R_0^2}{(k+1)^2}$. Moreover, $\rho_{k-1} = \frac{\rho_0}{\tau_{k-1}^2} \geq \frac{\rho_0(k+1)^2}{4}$ and $\rho_{k-1}S_{\rho_{k-1}}(z^k, \hat{\lambda}^0) \leq \rho_0 R_0^2$. Substituting these estimates into (6), we obtain (9).

4.1 Lower bound of convergence rate for the semi-strongly convex case

We consider again example (32), where we assume that g is μ_g -strongly convex. Algorithm 2 for solving (32) are special cases of (33) if g is strongly convex. Then, by [28, Theorem 2], the lower bound complexity of (33) to achieve \hat{x} such that $F(\hat{x}) - F^* \leq \varepsilon$ is $\Omega\left(\frac{1}{\sqrt{\varepsilon}}\right)$. Consequently, the rate of Algorithm 2 stated in Theorem 3.2 is optimal.

E Additional numerical experiments

We provide more numerical examples to support our theory presented in the main text.

5.1 The ℓ_1 -Regularized Least Absolute Derivation (LAD)

We consider the following ℓ_1 -regularized least absolute derivation (LAD) problem widely studied in the literature:

$$F^{\star} := \min_{y \in \mathbb{R}^{p_2}} \Big\{ F(y) := \|By - c\|_1 + \kappa \|y\|_1 \Big\},$$
(51)

where $B \in \mathbb{R}^{n \times \hat{p}}$ and $c \in \mathbb{R}^n$ are given, and $\kappa > 0$ is a regularization parameter. This problem is completely nonsmooth. If we introduce x := By - c, then we can reformulate (51) into (1) with two objective functions $f(x) := \|x\|_1$ and $g(y) := \kappa \|y\|_1$ and a linear constraint -x + By = c.

We use problem (51) to verify our theoretical results presented in Theorem 3.1 and Theorem 3.2. We implement Algorithm 1 (NEAPAL), its parallel scheme (NEAPAL-par), and Algorithm 2 (scvx-NEAPAL). We compare these algorithms with ASGARD [23] and its restarting variant, Chambolle-Pock's method [3], and standard ADMM [2]. For ADMM, we reformulate (51) into the following constrained setting:

$$\min_{x,y,z} \left\{ \|x\|_1 + \kappa \|z\|_1 \ | -x + By = c, \ y - z = 0 \right\}$$

to avoid expensive subproblems. We solve the subproblem in x using a preconditioned conjugate gradient method (PCG) with at most 20 iterations or up to 10^{-5} accuracy.

We generate a matrix *B* using standard Gaussian distribution $\mathcal{N}(0, 1)$ without and with correlated columns, and normalize it to get unit column norms. The observed vector *c* is generated as $c := Bx^{\natural} + \hat{\sigma}\mathcal{L}(0, 1)$, where x^{\natural} is a given *s*-sparse vector drawn from $\mathcal{N}(0, 1)$, and $\hat{\sigma} = 0.01$ is the variance of noise generated from a Laplace distribution $\mathcal{L}(0, 1)$. For problems of the size (m, n, s) = (2000, 700, 100), we tune to get a regularization parameter $\kappa = 0.5$.

We test these algorithms on two problem instances. The configuration is as follows:

- For NEAPAL and NEAPAL-par, we set $\rho_0 := 5$, which is obtained by upper bounding $\frac{2\|\lambda^*\|}{\|B\|\|y^0-y^*\|}$ as suggested by the theory. Here, y^* and λ^* are computed with the best accuracy using an interior-point algorithm in MOSEK.
- For scvx-NEAPAL we set $\rho_0 = \frac{1}{4\|B\|^2}$ by choosing $\mu_g = 0.5$.
- For Chambolle-Pock's method, we run two variants. In the first variant, we set step-sizes $\tau = \sigma = \frac{1}{\|B\|}$, and in the second one we choose $\tau = 0.01$ and $\sigma = \frac{1}{\|B\|^2 \tau}$ as suggested in [3], and it works better than $\tau = \frac{1}{\|B\|}$. We name these variants by CP and CP-0.01, respectively.
- For ADMM, we tune different penalty parameters and arrive at $\rho = 10$ that works best in this experiment.

The result of two problem instances are plotted in Figure 4. Here, ADMM-1 and ADMM-10 stand for ADMM with $\rho = 1$ and $\rho = 10$, respectively. CP and CP-0.01 are the first and second variants of Chambolle-Pock's method, respectively. ASGARD-rs is a restarting variant of ASGARD, and avg-stands for the relative objective residuals evaluated at the averaging sequence in Chambolle-Pock's method and ADMM. Note that the $\mathcal{O}\left(\frac{1}{k}\right)$ -rate of these two methods is proved for this averaging sequence.

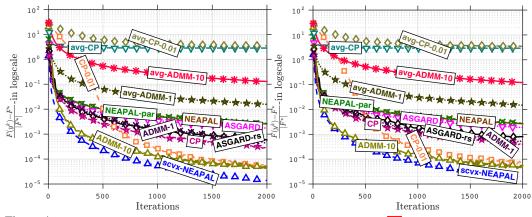


Figure 4: Convergence behavior of 9 algorithmic variants on two instances of (51) after 1000 iterations. Left: Without correlated columns; Right: With 50% correlated columns.

We can observe from Figure 4 that scvx-NEAPAL is the best. Both NEAPAL and NEAPAL-par have the same performance in this example and slightly slower than CP-0.01, ADMM-10 and ASGARD-rs. Note that ADMM requires to solve a linear system by PCG which is always slower than other methods including NEAPAL and NEAPAL-par. CP-0.01 works better than CP in late iterations but is slow in early iterations. ASGARD and ASGARD-rs remain comparable with CP-0.01. Since both Chambolle-Pock's method and ADMM have $O\left(\frac{1}{k}\right)$ -convergence rate on the averaging sequence, we also evaluate the relative objective residuals and plot them in Figure 4. Clearly, this sequence shows its $O\left(\frac{1}{k}\right)$ -rate but this rate is much slower than the last iterate sequence in all cases. It is also much slower than NEAPAL and NEAPAL-par, where both schemes have a theoretical guarantee.

5.2 Image compression using compressive sensing

In this last example, we consider the following constrained convex optimization model in compressive sensing of images:

$$\min_{Y \in \mathbb{R}^{p_1 \times p_2}} \Big\{ f(Y) := \|\mathcal{D}Y\|_{2,1} \mid \mathcal{L}(Y) = b \Big\},\tag{52}$$

where \mathcal{D} is 2D discrete gradient operator representing a total variation (isotropic) norm, $\mathcal{L} : \mathbb{R}^{p_1 \times p_2} \to \mathbb{R}^n$ is a linear operator obtained from a subsampled transformation scheme [2], and $b \in \mathbb{R}^n$ is a compressive measurement vector [1]. Our goal is to recover a good image Y from a small amount of measurement b obtained via a model-based measurement operator \mathcal{L} . To fit into our template (1), we introduce $x = \mathcal{D}Y$ to obtain two linear constraints $\mathcal{L}(Y) = b$ and $-x + \mathcal{D}Y = 0$. In this case, the constrained reformulation of (52) becomes

$$F^{\star} := \min_{x,Y} \left\{ F(z) := \|x\|_{2,1} \mid x - \mathcal{D}Y = 0, \ \mathcal{L}(Y) = b \right\},\$$

where $f(x) = ||x||_{2,1}$, and g(Y) = 0.

We now apply Algorithm [] (NEAPAL), its parallel variant (NEAPAL-par), and Algorithm [2] (scvx-NEAPAL) to solve this problem and compare them with the CP method in [3] and ADMM [2]. We also compare our methods with a line-search variant Ls-CP of CP recently proposed in [3].

In CP and Ls-CP, we tune the step-size τ and find that $\tau = 0.01$ works well. The other parameters of Ls-CP are set as in the previous examples. For NEAPAL and NEAPAL-par, we use $\rho_0 := 2||\mathcal{B}||^2$. We also use $\rho_0 := 10||\mathcal{B}||^2$ and call the variant of Algorithm 1 and its parallel scheme NEAPAL-v2 and NEAPAL-par-v2, respectively in this case. We set $\mu_g := \frac{1}{2||\mathcal{B}||}$ in scvx-NEAPAL as a guess for

restricted strong convexity parameter. For the standard ADMM algorithm, we tune its penalty parameter and find that $\rho := 20$ works best.

We test all the algorithms on 4 MRI images: MRI-of-knee, MRI-brain-tumor, MRI-hands, and MRI-wrist³ We follow the procedure in ^[2] to generate the samples using a sample rate of 25%. Then, the vector of measurements c is computed from $c := \mathcal{L}(Y^{\natural})$, where Y^{\natural} is the original image.

Table 2: Performance and results of 8 algorithms on 4 MRI images

Algorithms	$f(Y^k)$	$\frac{\ \mathcal{L}(Y^k) - b\ }{\ b\ }$	Error	PSNR	Time[s]	$f(Y^k)$	$\frac{\ \mathcal{L}(Y^k) - b\ }{\ b\ }$	Error	PSNR	Time[s]
	MRI-knee (779 $ imes$ 693)					MRI-brain-tumor (630×611)				
NEAPAL	24.350	2.637e-02	4.672e-02	83.93	80.15	36.101	2.724e-02	6.575e-02	79.50	53.77
NEAPAL-par	24.335	2.539e-02	4.676e-02	83.93	98.38	36.028	2.738e-02	6.595e-02	79.47	52.71
NEAPAL-v2	28.862	7.125e-05	4.143e-02	84.98	73.56	39.317	5.226e-05	6.310e-02	79.85	52.97
NEAPAL-par-v2	29.183	7.247e-05	4.007e-02	85.27	95.49	39.594	5.338e-05	6.258e-02	79.93	51.64
scvx-NEAPAL	24.633	2.295e-02	4.424e-02	84.41	87.96	36.783	2.184e-02	5.780e-02	80.62	65.12
CP	24.897	2.674e-02	4.629e-02	84.01	101.22	37.745	3.613e-02	7.896e-02	77.91	63.71
Ls-CP	24.955	2.638e-02	4.659e-02	83.96	106.11	38.139	3.414e-02	7.485e-02	78.37	66.12
ADMM	25.071	2.556e-02	4.654e-02	83.97	902.79	38.941	2.895e-02	6.135e-02	80.10	655.81
	MRI-hands (1024×1024)					MRI-wrist (1024 \times 1024)				
NEAPAL	45.207	2.081e-02	2.765e-02	91.37	146.41	29.459	1.802e-02	3.224e-02	90.04	152.51
NEAPAL-par	45.207	2.081e-02	2.765e-02	91.37	140.41	29.459	1.802e-02	3.224e-02	90.04	148.12
NEAPAL-v2	48.679	7.336e-05	2.074e-02	93.87	138.65	30.578	8.516e-05	2.572e-02	92.00	146.05
NEAPAL-parallel-v2	48.858	7.483e-05	2.008e-02	94.15	148.79	30.768	8.766e-05	2.473e-02	92.34	146.64
scvx-NEAPAL	45.426	1.820e-02	2.588e-02	91.95	154.35	29.403	1.647e-02	3.131e-02	90.29	157.35
CP	45.723	2.489e-02	3.895e-02	88.40	159.74	30.052	2.032e-02	3.661e-02	88.93	165.58
Ls-CP	53.640	2.724e-02	3.924e-02	88.33	162.94	39.396	2.353e-02	3.856e-02	88.48	168.29
ADMM	45.985	2.034e-02	3.443e-02	89.47	1691.53	29.922	1.825e-02	3.686e-02	88.88	1503.56

The performance and results of these algorithms are summarized in Table 2, where $f(Y^k) := \|\mathcal{D}Y^k\|_{2,1}$ is the objective value, $\operatorname{Error} := \frac{\|Y^k - Y^{\natural}\|_F}{\|Y^{\natural}\|_F}$ presents the relative error between the original image Y^{\natural} to the reconstruction Y^k after k = 300 iterations.

We observe the following facts from the results of Table 2

- NEAPAL, NEAPAL-par, and scvx-NEAPAL are comparable with CP in terms of computational time, PSNR, objective values, and solution errors.
- NEAPAL-v2 and NEAPAL-par-v2 give better PSNR and solution errors, but have slightly worse objective value than the others.
- Ls-CP is slower than our methods due to additional computation.
- ADMM gives similar result in terms of the objective values, solution errors, and PSNR, but it is much slower than other methods due to the PCG inner loop.

References

- 1. L. Baldassarre, Y.-H. Li, J. Scarlett, B. Gözcü, I. Bogunovic, and V. Cevher. Learning-based compressive subsampling. *IEEE Journal of Selected Topics in Signal Processing*, 10(4):809–822, 2016.
- F. Knoll, C. Clason, C. Diwoky, and R. Stollberger. Adapted random sampling patterns for accelerated MRI. Magnetic resonance materials in physics, biology and medicine, 24(1):43–50, 2011.
- 3. Y. Malitsky and T. Pock. A first-order primal-dual algorithm with linesearch. *SIAM J. Optim.*: 28(1), 411–432, 2018.

³These images are from https://radiopaedia.org/cases/4090/studies/6567 and https://www.nibib.nih.gov