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Non-Ergodic Alternating Proximal Augmented Lagrangian

Algorithms with Optimal Rates

A Properties of Augmented Lagrangian Function and Optimality Bounds

In this section, we investigate some properties of the augmented Lagrangian function L⇢ in (5).
1.1 Properties of the augmented Lagrangian function

Let us recall the augmented Lagrangian function L⇢ in (5) associated with problem (1). To investigate
its properties, we define the following two functions:

 ⇢(u,�) :=
⇢
2kuk

2
� h�, ui, and �⇢(z,�) :=  ⇢(Ax+By � c,�). (12)

Since ru ⇢(u, �̂) = ⇢u� �̂ is ⇢-Lipschitz continuous in u for any given �̂ 2 Rn, it is obvious that

 ⇢(u+, �̂)   ⇢(u, �̂) + hru ⇢(u, �̂), u+ � ui+ ⇢
2ku+ � uk2

 ⇢(u+, �̂) �  ⇢(u, �̂) + hru ⇢(u, �̂), u+ � ui+ 1
2⇢kru ⇢(u+, �̂)�ru ⇢(u, �̂)k2,

(13)

for any u+, u 2 Rn, see, e.g., [18].

Given ẑk+1 := (xk+1, ŷk) 2 dom(F ) and �̂k 2 Rn, we also define the following linear function:

`k⇢(z) := �⇢(ẑ
k+1, �̂k) + hrx�⇢(ẑ

k+1, �̂k), x� xk+1
i+ hry�⇢(ẑk+1, �̂

k), y � ŷki. (14)

If we define sk := Axk +Byk � c and ŝk+1 := Axk+1 +Bŷk � c, then using the definition of `k⇢
and �⇢, we can easily show that

`k⇢(z) = �⇢(z, �̂k)�
⇢
2kA(x� xk+1) +B(y � ŷk)k2, 8z 2 dom(F ),

`k⇢(z
?) = �

⇢
2kŝ

k+1
k
2 and `k⇢(z

k) = �⇢(zk, �̂k)�
⇢
2ks

k
� ŝk+1

k
2,

(15)

where z? 2 Z
? is any solution of (1).

For any matrix B := [B1, · · · , Bm] concatenated from m matrices Bi for i = 1, · · · ,m, we define
LB := kBk

2 and L̄B := m ·max
�
kBik

2
| 1  i  m

 
, where kBk and kBik is the operator norms

of B and Bi, respectively. For any d = [d1, · · · , dm] 2 Rp̂, we can easily show that

kBdk2 = k

mX

i=1

Bidik
2
 kBk

2
kdk2  m

mX

i=1

kBik
2
kdik

2
 L̄Bkdk

2. (16)

By the definition of �⇢, using (14), (15), and (16), for any (x, y) 2 dom(F ), ŷ 2 dom(g), and
�̂ 2 Rn, we can derive

�⇢(x, y, �̂)� �⇢(x, ŷ, �̂)� hry�⇢(x, ŷ, �̂), y � ŷi =
⇢

2
kB(y � ŷ)k2.

Hence, by (16), we can show that

�⇢(x, y, �̂)� �⇢(x, ŷ, �̂)� hry�⇢(x, ŷ, �̂), y � ŷi 
⇢LB

2
ky � ŷk2 

⇢L̄B

2
ky � ŷk2. (17)

1.2 The proof of Lemma 2.1: Approximate optimal solutions of (1)
For any z 2 dom(F ), we have F ? = L(z?,�?)  L(z,�?) = F (z) � h�?, Ax + By � ci. Using
the definition of S⇢(·), we obtain

S⇢(z,�) + h�, Ax+By � ci �
⇢

2
kAx+By � ck2 = F (z)� F (z?) � h�?, Ax+By � ci. (18)

This inequality implies
⇢
2kAx+By � ck2 � k�� �?kkAx+By � ck � S⇢(z,�)  0, (19)
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which leads to
2⇢S⇢(z,�) + k�� �?k2 � ⇢2kAx+By � ck2 � 2⇢k�� �?kkAx+By � ck+ k�� �?k2

= [⇢kAx+By � ck � k�� �?k]2 � 0.

From from (19), we also have kAx + By � ck 
1
⇢

h
k�� �?k+

p
k�� �?k2 + 2⇢S⇢(z,�)

i
by

solving a quadratic inequation. This is the second inequality of (6).

Next, from (18), we have

F (z)� F ?
 S⇢(z,�)�

⇢
2kAx+By � ck2 + k�kkAx+By � ck

 S⇢(z,�)�
⇢
2

h
kAx+By � ck � k�k

⇢

i2
+ k�k2

2⇢

 S⇢(z,�) +
k�k2

2⇢ .

Using the Cauchy-Schwarz inequality, it follows from F ?
 F (z) � h�?, Ax + By � ci that

�k�?kkAx+By � ck  F (z)� F ?. Combining these two inequalities and the second estimate of
(6), we obtain the first estimate of (6). ⇤
B Convergence analysis of Algorithm 1

Lemma B.1 and Lemma B.2 below are key to analyze the convergence of Algorithm 1.
Lemma B.1. Assume that L⇢ is defined by (5), and `k⇢k

is defined by (14). Let zk+1
be computed by

Algorithm 1. Then, for any z 2 dom(F ), we have

L⇢k(z
k+1, �̂k)  F (z) + `k⇢k

(z) + �khxk+1
� x̂k, x� x̂k

i � �kkxk+1
� x̂k

k
2

+ �khyk+1
� ŷk, y � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2.

(20)

Proof. Using (17) with ⇢ = ⇢k, (x, y) = (xk+1, yk+1) = zk+1, (x, ŷ) = (xk+1, ŷk) = ẑk+1, and
�̂ = �̂k, we have

�⇢k(z
k+1, �̂k)  �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2. (21)

Next, using again �⇢ from (12), we can write down the optimality condition of the x-subproblem at
Step 5 and the yi-subproblem at Step 6 of Algorithm 1 as follows:
(

0 = rf(xk+1) +rx�⇢k(ẑ
k+1, �̂k) + �k(xk+1

� x̂k), rf(xk+1) 2 @f(xk+1),

0 = rgi(y
k+1
i ) +ryi�⇢k(ẑ

k+1, �̂k) + �k(y
k+1
i � ŷki ), rgi(y

k+1
i ) 2 @gi(y

k+1
i ).

(22)

Using the convexity of f and g, for any x 2 dom(f) and y 2 dom(g), we have

f(xk+1)  f(x) + hrf(xk+1), xk+1
� xi, rf(xk+1) 2 @f(xk+1),

g(yk+1)  g(y) + hrg(yk+1), yk+1
� yi, rg(yk+1) 2 @g(yk+1).

(23)

Combining (21), (22), and (23), and then using the definition (5) of L⇢, for any z = (x, y) 2 dom(F ),
we can derive that

L⇢k(z
k+1, �̂k)= f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(21),(23)
 f(x) + hrf(xk+1), xk+1

� xi+ g(y) + hrg(yk+1), yk+1
� yi

+ �⇢k(ẑ
k+1, �̂k) + hry�⇢k(ẑ

k+1, �̂k), yk+1
� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

(22)
 F (z) + �⇢k(ẑ

k+1, �̂k) + hrx�⇢k(ẑ
k+1, �̂k), x� xk+1

i+ hry�⇢k(ẑ
k+1, �̂k), y � ŷki

+ �khx̂k
� xk+1, xk+1

� xi+ �khŷk � yk+1, yk+1
� yi+ ⇢kLB

2 kyk+1
� ŷkk2

(14)
= F (z) + `k⇢k

(z) + �khxk+1
� x̂k, x� x̂k

i � �kkxk+1
� x̂k

k
2

+ �khyk+1
� ŷk, y � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2,

which is exactly (20).
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Lemma B.2. Let (zk, �̂k, zk+1, z̃k+1) be generated by Algorithm 1. Then, for any � 2 Rn
, if

0  2⌘k  ⇢k⌧k, then one has

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?) + �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤

+�k⌧
2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤
+ ⌧k

2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤

�
(�k�2⇢kLB)

2 kyk+1
� ŷkk2 � (1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2,

(24)

where ⌧k 2 [0, 1], and ⇢k, �k, �k, and ⌘k are positive parameters, and sk := Axk +Byk � c.

Proof. Using (20) with z = zk and z = z?, respectively, and then using (15), we obtain

L⇢k(z
k+1, �̂k)

(15)
 L⇢k(z

k, �̂k)� ⇢k

2 ksk � ŝk+1
k
2 + �khxk+1

� x̂k, xk
� x̂k

i

��kkxk+1
� x̂k

k
2 + �khyk+1

� ŷk, yk � ŷki � (2�k�⇢kLB)
2 kyk+1

� ŷkk2,

L⇢k(z
k+1, �̂k)

(15)
 F (z?)� ⇢k

2 kŝk+1
k
2 + �khxk+1

� x̂k, x?
� x̂k

i � �kkxk+1
� x̂k

k
2

+�khyk+1
� ŷk, y? � ŷki � (2�k�⇢kLB)

2 kyk+1
� ŷkk2.

Here, sk := Axk + Byk � c and ŝk+1 := Axk+1 + Bŷk � c. Multiplying the first inequality by
(1� ⌧k) 2 [0, 1] and the second one by ⌧k 2 [0, 1] and summing up the results, and then using the
fact that L⇢k(z

k, �̂k) = L⇢k�1(z
k, �̂k) + (⇢k�⇢k�1)

2 kskk2, we can estimate

L⇢k(z
k+1, �̂k)  (1� ⌧k)L⇢k(z

k, �̂k) + ⌧kF (z?)� (1�⌧k)⇢k

2 ksk � ŝk+1
k
2
�

⌧k⇢k

2 kŝk+1
k
2

+ �k⌧khx
k+1

� x̂k, x?
� x̃k

i � �kkx
k+1

� x̂k
k
2 + �k⌧khy

k+1
� ŷk, y? � ỹki

�
�k

2 kyk+1
� ŷkk2 � (�k�⇢kLB)

2 kyk+1
� ŷkk2

= (1� ⌧k)L⇢k�1(z
k, �̂k) + ⌧kF (z?)� �k

2 kxk+1
� x̂k

k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

+ �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤
+ �k⌧

2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤

�
(1�⌧k)⇢k

2 ksk � ŝk+1
k
2
�

⌧k⇢k

2 kŝk+1
k
2 + (1�⌧k)(⇢k�⇢k�1)

2 kskk2. (25)

Here, we use ⌧kx̃k = x̂k
� (1 � ⌧k)xk, ⌧ ỹk = ŷk � (1 � ⌧k)yk, ⌧k(x̃k+1

� x̃k) = xk+1
� x̂k,

⌧k(ỹk+1
� ỹk) = yk+1

� ŷk, and an elementary expression 2ha, bi � kak2 = ka� bk2 � kbk2.

Now, let s̃k+1/2 := Ax̃k+1 +Bỹk � c. Then, it is trivial to estimate the quantity Tk below

Tk := (1�⌧k)⇢k

2 ksk � ŝk+1
k
2 + ⌧k⇢k

2 kŝk+1
k
2
�

(1�⌧k)(⇢k�⇢k�1)
2 kskk2

= ⇢k

2 kŝk+1
� (1� ⌧k)skk2 +

(1�⌧k)
2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2

= ⇢k⌧
2
k

2 ks̃k+1/2
k
2 + (1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2.

(26)

Here, we use the fact that ŝk+1
� (1� ⌧k)sk = Axk+1 +Bŷk � c� (1� ⌧k)(Axk +Byk � c) =

⌧k(Ax̃k+1 +Bỹk � c) = ⌧ks̃k+1/2.

Using the relation L⇢(z,�) = L⇢(z, �̂)+h�̂��, Ax+By�ci from (5), zk+1
�(1�⌧k)zk = ⌧kz̃k+1,

and (26), we can further derive from (25) for any � 2 Rn that

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?)� (1�⌧k)
2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2

+�k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤
+ �k⌧

2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤

�
�k

2 kxk+1
� x̂k

k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

+⌧kh�̂k � �, Ax̃k+1 +Bỹk+1
� ci � ⇢k⌧

2
k

2 ks̃k+1/2
k
2.

(27)

Let s̃k+1 := Ax̃k+1 +Bỹk+1
� c. From the update rule �̂k+1 := �̂k � ⌘k(Ax̃k+1 +Bỹk+1

� c) =
�̂k � ⌘ks̃k+1, if we define Mk := ⌧kh�̂k � �, Ax̃k+1 +Bỹk+1

� ci, then we can estimate Mk as

Mk = ⌧k
⌘k
h�̂k � �, �̂k � �̂k+1

i = ⌧k
2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤
+ ⌧k

2⌘k
k�̂k � �̂k+1

k
2

= ⌧k
2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤
+ ⌘k⌧k

2 ks̃k+1
k
2.

(28)
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Substituting (28) into (27) we obtain

L⇢k(z
k+1,�)  (1� ⌧k)L⇢k�1(z

k,�) + ⌧kF (z?) + �k⌧
2
k

2

⇥
kx̃k

� x?
k
2
� kx̃k+1

� x?
k
2
⇤

+ �k⌧
2
k

2

⇥
kỹk � y?k2 � kỹk+1

� y?k2
⇤
+ ⌧k

2⌘k

⇥
k�̂k � �k2 � k�̂k+1

� �k2
⇤

+ ⌘k⌧k
2 ks̃k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2
�

(�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�
(1�⌧k)

2 [⇢k�1 � ⇢k(1� ⌧k)] kskk2.

(29)

Finally, by using kuk2 � 2kvk2  2ku� vk2, it is straightforward to show that if 2⌘k  ⇢k⌧k, then

⌘k⌧k
2 ks̃k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2


LB⇢k⌧
2
k

2 kỹk+1
� ỹkk2.

Therefore, substituting this estimate into (29), we obtain (24).

From Lemma B.2, we need to derive rules for updating the parameters ⌧k, ⇢k, �k, �k, and ⌘k. These
updates are guided by the following lemma, which is shown in Algorithm 1.
Lemma B.3. If the parameters ⌧k, ⇢k, �k, �k, and ⌘k are updated as

(
⌧k := 1

k+1 , ⇢k := ⇢0(k + 1), �k := 2LB⇢0(k + 1),

⌘k := ⇢0

2 , and 0  �k+1 
�
k+2
k+1

�
�k,

(30)

then the sequence
�
(zk, z̃k)

 
satisfies

2kS⇢k�1(z
k, �̂0)+

�k
k + 1

kx̃k
�x?

k
2+2⇢0LBkỹ

k
�y?k2  �0kx

0
�x?

k
2+2⇢0LBky

0
�y?k2, (31)

where S⇢k�1(z
k, �̂0) := L⇢k�1(z

k, �̂0)� F ?
, and ⇢0 > 0 and �0 � 0 are given.

Proof. First, we choose to update ⌧k as ⌧k = 1
k+1 . Then, ⌧0 = 1. From the last term of (24), we

impose ⇢k�1 � ⇢k(1� ⌧k) = 0. This suggests us to update ⇢k as ⇢k = ⇢0(k + 1).

We also choose �k := 2LB⇢k and ⌘k := ⇢k⌧k
2 to guarantee �k � 2⇢kLB � 0 and 2⌘k  ⇢k⌧k,

respectively. Using the update of ⌧k and ⇢k, we can easily show that �k = 2LB⇢0(k + 1) and
⌘k := ⇢0

2 as shown in (30).

Using the update (30) and � := �̂0 into (24) with Sk := L⇢k�1(z
k, �̂0)� F ?, we have

(k + 1)Sk+1 +
1
⇢0
k�̂k+1

� �̂0k2 + �k

2(k+1)kx̃
k+1

� x?
k
2 + ⇢0LBkỹk+1

� y?k2  kSk

+ 1
⇢0
k�̂k � �̂0k2 + �k

2(k+1)kx̃
k
� x?

k
2 + ⇢0LBkỹk � y?k2.

We also choose �k+1

k+2 
�k

k+1 . Hence, by induction, the last inequality leads to

kSk+
1
⇢0
k�̂k� �̂0k2+ �k

2(k+1)kx̃
k
�x?

k
2+⇢0LBkỹ

k
�y?k2 

�0

2 kx̃0
�x?

k
2+⇢0LBkỹ

0
�y?k2.

Since x̃0 = x0 and ỹ0 = y0, by ignoring the term 1
⇢0
k�̂k � �̂0k2, the last inequality leads to (31).

Finally, the condition �k+1

k+2 
�k

k+1 holds if 0  �k+1 
�
k+2
k+1

�
�k.

The proof of Theorem 3.1. Let R2
0 := �0kx0

� x?
k
2 + 2⇢0LBky0 � y?k2. From (31), we have

S⇢k�1(z
k, �̂0) = L⇢k(z

k, �̂0)� F ?


R2
0

2k . Moreover, ⇢k�1 = ⇢0k. Substituting these two expres-
sions into (6), we obtain (8).

C Lower bound on convergence rates of Algorithm 1

In order to show that the convergence rate of Algorithm 1 is optimal, we consider the following
example studied in [28]:

min
z:=[x,y]

n
F (z) := f(x) + g(y) | x� y = 0

o
, (32)
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which is a split reformulation of an additive composite objective function F (x) = f(x) + g(x).
Algorithm 1 for solving (32) can be cast as a special case of the following generic scheme:

8
>>>>><

>>>>>:

(ŷk, �̂k) are linear combinations of previous iterates

xk+1 := prox�kf

�
x̂k

� ��1
k �̂k

�

(x̃k+1, �̂k+1) are linear combinations of computed iterates

yk+1 := prox�kg

�
x̃k+1

� ��1
k �̂k+1

�
.

(33)

Then, there exist f and g defined on
�
x 2 R6k+5

| kxk  B
 

which are convex and Lf -Lipschitz
continuous such that the general primal-dual scheme (33) exhibits a lower bound:

F (x̆k) �
LfB

8(k + 1)
,

where x̆k :=
Pk

j=1 ↵jxj +
Pk

l=1 �ly
l for any ↵j and �l with j, l = 1, · · · , k. This example can

be found in [14, Proposition 5]. Consequently, Algorithm 1 has a lower bound convergence rate of
O
�
1
k

�
. Hence, the O

�
1
k

�
convergence rate stated in Theorem 3.1 is optimal within a constant factor.

D Convergence analysis of Algorithm 2

Lemmas D.1 and D.2 provide key estimates to prove the convergence of Algorithm 2.
Lemma D.1. Assume that L⇢ is defined by (5), and `k⇢ is defined by (14). Let Q

k
⇢ be defined as

Q
k
⇢k
(y) := �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y � ŷki+ ⇢kLB

2 ky � ŷkk2. (34)

Then, �⇢k(x
k+1, y, �̂k)  Q

k
⇢k
(y) for any y 2 Rp̂

.

Let (xk+1, z̃k+1, ẑk, �̂k) be computed by Algorithm 2, and y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1
. Then, for

any z 2 dom(F ), we have

L̆
k+1
⇢k

:= f(xk+1) + g(y̆k+1) +Q
k
⇢k
(y̆k+1)  (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤

+ ⌧k
⇥
F (z) + `k⇢k

(z)
⇤
+ �k⌧

2
k

2 kx̃k
� xk2 � �k⌧

2
k

2 kx̃k+1
� xk2 � �k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � yk2 � �k⌧
2
k+µg⌧k
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

(35)

Proof. Since ẑk = (1� ⌧k)zk + ⌧kz̃k, we have (1� ⌧k)xk + ⌧kx̃k+1
� xk+1 = 0 and y̆k+1

� ŷk =
⌧k(ỹk+1

� ỹk). Using these expressions, y̆k+1, `k⇢k
in (14), and Q

k
⇢k

in (34), we can derive

Q
k
⇢k
(y̆k+1) = �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2

= (1�⌧k)
h
�⇢k(ẑ

k+1, �̂k)+hrx�⇢k(ẑ
k+1, �̂k), xk

�xk+1
i+hry�⇢k(ẑ

k+1, �̂k), yk�ŷki
i

+ ⌧k
h
�⇢k(ẑ

k+1, �̂k) + hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xk+1
i+ hry�⇢k(ẑ

k+1, �̂k), ỹk+1�ŷki
i

+ hrx�⇢k(ẑ
k+1, �̂k), (1� ⌧k)x

k + ⌧kx̃
k+1

� xk+1
i+ ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2

(14)
= (1� ⌧k)`

k
⇢k
(zk) + ⌧k`

k
⇢k
(z̃k+1) + ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2. (36)

By the convexity of f and xk+1
� (1 � ⌧k)xk = ⌧kx̃k+1, for any x 2 dom(f) and rf(xk+1) 2

@f(xk+1), we can estimate that

f(xk+1)  f((1� ⌧k)xk + ⌧kx) + hrf(xk+1), xk+1
� (1� ⌧k)xk

� ⌧kxi

 (1� ⌧k)f(xk) + ⌧kf(x) + ⌧khrf(xk+1), x̃k+1
� xi,

(37)

Since y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1, by µg-convexity of g, for any y 2 dom(g) and rg(ỹk+1) 2
@g(ỹk+1), we have

g(y̆k+1)  (1� ⌧k)g(yk) + ⌧kg(ỹk+1)� ⌧k(1�⌧k)µg

2 kỹk+1
� ykk2

 (1� ⌧k)g(yk) + ⌧kg(y) + ⌧khrg(ỹk+1), ỹk+1
� yi � ⌧kµg

2 kỹk+1
� yk2.

(38)

14



Next, note that

`k⇢k
(z̃k+1) = �⇢k(ẑ

k+1, �̂k)+hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xk+1
i+hry�⇢k(ẑ

k+1, �̂k), ỹk+1
�ŷki

= �⇢k(ẑ
k+1, �̂k) + hrx�⇢k(ẑ

k+1, �̂k), x� xk+1
i+ hry�⇢k(ẑ

k+1, �̂k), y � ŷki

+ hrx�⇢k(ẑ
k+1, �̂k), x̃k+1

� xi+ hry�⇢k(ẑ
k+1, �̂k), ỹk+1

� yi

= `k⇢k
(z) + hrx�⇢k(ẑ

k+1, �̂k), x̃k+1
� xi+ hry�⇢k(ẑ

k+1, �̂k), ỹk+1
� yi.

(39)

Combining (36), (37), (38), and (39), for any z := (x, y) 2 dom(F ), we can derive

L̆
k+1
⇢k

(34)
= f(xk+1) + g(y̆k+1) +Q

k
⇢k
(y̆k+1)

(37),(38),(39)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤

+ ⌧khrf(xk+1)+rx�⇢k(ẑ
k+1, �̂k), x̃k+1

�xi+⌧khrg(ỹk+1)+ry�⇢k(ẑ
k+1, �̂k), ỹk+1�yi

�
⌧kµg

2 kỹk+1
� yk2 + ⇢k⌧

2
kLB

2 kỹk+1
� ỹkk2.

(40)

Next, from the optimality condition of the x- and yi-subproblems in Algorithm 2, we can show that
(

rf(xk+1) +rx�⇢k(ẑ
k+1, �̂k) = �k(x̂k

� xk+1), rf(xk+1) 2 @f(xk+1),

rg(ỹk+1) +ry�⇢k(ẑ
k+1, �̂k) = ⌧k�k(ỹk � ỹk+1), rg(ỹk+1) 2 @g(ỹk+1).

(41)

Moreover, we also have

2⌧khx̂k
� xk+1, x̃k+1

� xi = ⌧2kkx̃
k
� xk2 � ⌧2kkx̃

k+1
� xk2 � kxk+1

� x̂k
k
2

2hỹk � ỹk+1, ỹk+1
� yi = kỹk � yk2 � kỹk+1

� yk2 � kỹk+1
� ỹkk2.

(42)

Using (41) and (42) into (40), we can further derive

L̆
k+1
⇢k

(35)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤
�

⌧kµg

2 kỹk+1
� yk2

+⌧k�khx̂k
� xk+1, x̃k+1

� xi+ ⌧2k�khỹ
k
� ỹk+1, ỹk+1

� yi+ ⇢k⌧
2
kLB

2 kỹk+1
� ỹkk2

(42)
 (1� ⌧k)

⇥
F (zk) + `k⇢k

(zk)
⇤
+ ⌧k

⇥
F (z) + `k⇢k

(z)
⇤

+�k⌧
2
k

2 kx̃k
� xk2 � �k⌧

2
k

2 kx̃k+1
� xk2 � �k

2 kxk+1
� x̂k

k
2

+�k⌧
2
k

2 kỹk � yk2 �
(�k⌧

2
k+µg⌧k)
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2,

which is exactly (35).

Lemma D.2. Let {(zk, ẑk, z̃k, �̂k)} be the sequence generated by Algorithm 2. Then

L⇢k(z
k+1, �̂k)  (1� ⌧k)L⇢k�1(z

k, �̂k) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2,

(43)

where �k, �k, and ⇢k are positive parameters, ⌧k 2 [0, 1], sk := Axk + Byk � c, s̃k+1/2 :=
Ax̃k+1 +Bx̃k

� c, and y̆k+1 := (1� ⌧k)yk + ⌧kỹk+1
.

Proof. Using (35) with z = z?, and then combining the result with (15), we obtain

L̆
k+1
⇢k

 (1� ⌧k)L⇢k(z
k, �̂k) + ⌧kF (z?)� (1�⌧k)⇢k

2 kŝk+1
� skk2 � ⇢k⌧k

2 kŝk+1
k
2

+�k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � yk2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� yk2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

15



Next, using L⇢k(z
k, �̂k) = L⇢k�1(z

k, �̂k) + (⇢k�⇢k�1)
2 kskk2 in the last inequality, and then combin-

ing the result with (26), we obtain

L̆
k+1
⇢k

 (1� ⌧k)L⇢k�1(z
k, �̂k) + ⌧kF (z?)� (1�⌧k)(⇢k�1�⇢k(1�⌧k))

2 kskk2 � ⇢k⌧
2
k

2 ks̃k+1/2
k
2

+�k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+�k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2.

(44)

Now, we consider two cases corresponding to the two options at Step 11 of Algorithm 2.

Option 1: If yk+1 = y̆k+1, then we have

L⇢k(z
k+1, �̂k) = f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(17)
 f(xk+1) + g(y̆k+1) + �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), y̆k+1

� ŷki

+ ⇢kLB

2 ky̆k+1
� ŷkk2

= f(xk+1) + g(y̆k+1) +Q
k
⇢k
(y̆k+1)

= L̆
k+1
⇢k

= L̆
k+1
⇢k

� h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2.

Here, the last relation follows from the fact that h�̂k��̂0, B(yk+1
�y̆k+1)i+ ⇢kLB

2 kyk+1
�y̆k+1

k
2 =

0 since yk+1 = y̆k+1. Combining the last estimate and (44), we obtain the key estimate (43).

Option 2: If we choose yk+1
i := proxgi/(⇢kLB)

�
ŷki �

1
⇢kLB

B>
i

�
⇢krk � �̂0

��
, then we write it as

yk+1
i = argmin

yi

n
gi(yi) + hryi�⇢k(ẑ

k+1, �̂0), yi � ŷki i+
⇢kLB

2 kyi � ŷki k
2
o

for all i = 1, · · · ,m.

From the optimality condition of these yi-subproblems, one can easily show that

g(yk+1) + hry�⇢k(ẑ
k+1, �̂0), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

 g(y̆k+1) + hry�⇢k(ẑ
k+1, �̂0), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2 � ⇢kLB

2 kyk+1
� y̆k+1

k
2.

Using �⇢k(x
k+1, y̆k+1, �̂k)  Q

k
⇢k
(y̆k+1) from Lemma D.1, and the last inequality, we can derive

L⇢k(z
k+1, �̂k) = f(xk+1) + g(yk+1) + �⇢k(z

k+1, �̂k)

(17)
 f(xk+1) + g(yk+1) + �⇢k(ẑ

k+1, �̂k) + hry�⇢k(ẑ
k+1, �̂k), yk+1

� ŷki

+ ⇢kLB

2 kyk+1
� ŷkk2

= f(xk+1) + �⇢k(ẑ
k+1, �̂k)� hB>(�̂k � �̂0), yk+1

� ŷki

+ g(yk+1) + hry�⇢k(ẑ
k+1, �̂0), yk+1

� ŷki+ ⇢kLB

2 kyk+1
� ŷkk2

 f(xk+1) + �⇢k(ẑ
k+1, �̂k)� hB>(�̂k � �̂0), yk+1

� ŷki � ⇢kLB

2 kyk+1
� y̆k+1

k
2

+ g(y̆k+1) + hry�⇢k(ẑ
k+1, �̂0), y̆k+1

� ŷki+ ⇢kLB

2 ky̆k+1
� ŷkk2

 L̆
k+1
⇢k

�
⇢kLB

2 kyk+1
� y̆k+1

k
2
� h�̂k � �̂0, B(yk+1

� y̆k+1)i.

Combining this estimate and (44), we obtain the key estimate (43).

Our next step is to show how to choose the parameters �k,�k, ⇢k, and ⌧k 2 [0, 1] such that we can
obtain a convergence property of L⇢k(·).
Lemma D.3. If the parameters ⌧k, ⇢k, �k, �k, and ⌘k are updated as

(
⌧k := 1

2⌧k�1

�
(⌧2k�1 + 4)1/2 � ⌧k�1

�
, ⇢k := ⇢0

⌧2
k
,

�k := �0 � 0, �k := 2LB⇢k, and ⌘k := ⇢k⌧k
2 ,

(45)

with ⌧0 := 1 and ⇢0 2

⇣
0, µg

4LB

i
, then

L⇢k�1(z
k, �̂0)� F (z?) 

⌧2k�1

2

⇥
�0kx̃

0
� x?

k
2 + 2⇢0LBkỹ

0
� y?k2

⇤
. (46)
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Proof. Since L⇢(z, �̂0) = L⇢(z, �̂k) + h�̂k � �̂0, Ax+By � ci, from (43), we have

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2
�

�k

2 kxk+1
� x̂k

k
2

+ �k⌧
2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

�y?k2 � (�k�⇢kLB)⌧2
k

2 kỹk+1
�ỹkk2

+ h�̂k � �̂0, Axk+1 +Byk+1
� c� (1� ⌧k)(Axk +Byk � c)i

� h�̂k � �̂0, B(yk+1
� y̆k+1)i � ⇢kLB

2 kyk+1
� y̆k+1

k
2
�

⇢k⌧
2
k

2 ks̃k+1/2
k
2.

(47)

Now, using y̆k+1
� (1 � ⌧k)yk = ⌧kỹk+1, xk+1

� (1 � ⌧k)xk = ⌧kx̃k+1, and the dual update
�̂k+1 := �̂k � ⌘k(Ax̃k+1 +Bỹk+1

� c) = �̂k � ⌘ks̃k+1, we can show that

Mk := h�̂k � �̂0, Axk+1 +Byk+1
� c� (1� ⌧k)(Axk +Byk � c)�B(yk+1

� y̆k+1)i

= h�̂k � �̂0, Axk+1 +By̆k+1
� c� (1� ⌧k)(Axk +Byk � c)i

= ⌧kh�̂k � �̂0, Ax̃k+1 +Bỹk+1
� ci

= ⌧k
⌘k
h�̂k � �̂0, �̂k � �̂k+1

i = ⌧k
2⌘k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
+ ⌘k⌧k

2 ks̃k+1
k
2.

Using this estimate of Mk into (47), similar to (29), if 2⌘k  ⇢k⌧k, then we can show that

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?)� (1�⌧k)
2 (⇢k�1 � ⇢k(1� ⌧k))kskk2

+ �k⌧
2
k

2 kx̃k
� x?

k
2
�

�k⌧
2
k

2 kx̃k+1
� x?

k
2 + �k⌧

2
k

2 kỹk � y?k2

�
(�k⌧

2
k+µg⌧k)
2 kỹk+1

� y?k2 � (�k�2⇢kLB)⌧2
k

2 kỹk+1
� ỹkk2

�
⇢kLB

2 kyk+1
� y̆k+1

k
2 + ⌧k

2⌘k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
.

(48)

Let us first update ⌧k as ⌧k = 1
2⌧k�1

�
(⌧2k�1+4)1/2�⌧k�1

�
with ⌧0 = 1, and ⇢k = ⇢k�1

1�⌧k
as in (45). It

is not hard to show that 1
k+1  ⌧k 

2
k+2 and ⇢k = ⇢0

⌧2
k

. Moreover,
Qk�1

i=1 (1� ⌧i) =
1

⌧2
k�1


4

(k+1)2 .
To guarantee �k � 2LB⇢k and 2⌘k  ⇢k⌧k, we can update �k := 2LB⇢k and ⌘k := ⇢k⌧k

2 . Therefore,
(48) can be simplified as

L⇢k(z
k+1, �̂0)  (1� ⌧k)L⇢k�1(z

k, �̂0) + ⌧kF (z?) + �k⌧
2
k

2 kx̃k
� x?

k
2

�
�k⌧

2
k

2 kx̃k+1
� x?

k
2 + �k⌧

2
k

2 kỹk � y?k2 � (�k⌧
2
k+µg⌧k)
2 kỹk+1

� y?k2

+ 1
⇢k

⇥
k�̂k � �̂0k2 � k�̂k+1

� �̂0k2
⇤
.

(49)

Now, let us define

Ak := L⇢k�1(z
k, �̂0)�F ?+

1

⇢k
k�̂k��̂0k2+

�k�1⌧2k�1

2
kx̃k

�x?
k
2+

(�k�1⌧2k�1 + µg⌧k�1)

2
kỹk�y?k2.

Assume that
1

⇢k


1

⇢k�1
,

�k⌧2k
1� ⌧k

 �k�1⌧
2
k�1 + µg⌧k�1 and

�k⌧2k
1� ⌧k

 �k�1⌧
2
k�1. (50)

Then, (49) implies Ak+1  (1� ⌧k)Ak. By induction, and ⌧0 = 1, we can show that

Ak 
1

2

 
k�1Y

i=1

(1� ⌧i)

!
⇥
�0kx̃

0
� x?

k
2 + �0kỹ

0
� y?k2

⇤
,

Since
Qk�1

i=1 (1 � ⌧i) = ⌧2k�1 and �0 = 2LB⇢0, the last inequality implies S⇢k�1(z
k, �̂0) :=

L⇢k�1(z
k, �̂0)� F (z?) 

⌧2
k�1

2

⇥
�0kx̃0

� x?
k
2 + 2⇢0LBkỹ0 � y?k2

⇤
, which proves (46).

Since �k := 2LB⇢k, the condition �k⌧
2
k

1�⌧k
 �k�1⌧2k�1 + µg⌧k�1 becomes LB⇢k

⌧2
k

1�⌧k


LB⇢k�1⌧2k�1 +
µg

2 ⌧k�1. Using ⇢k = ⇢0

⌧2
k

and ⌧2
k

1�⌧k
= ⌧2k�1, the last condition holds if LB⇢0

⌧k�1

⌧k


µg

2 . Since 1 
⌧k�1

⌧k
 2, LB⇢0

⌧k�1

⌧k


µg

2 holds if 4LB⇢0  µg . This condition leads to ⇢0 
µg

4LB
.
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Next, the condition �k⌧
2
k

1�⌧k
 �k�1⌧2k�1 shows that we can choose �k as �k  �k�1. This condition

holds if we fix �k := �0 � 0. Now, we find the condition for ⌘k in (45). Since ⇢k = ⇢0

⌧2
k

, the condition
1
⇢k


1

⇢k�1
in (50) is automatically satisfied.

The proof of Theorem 3.2. Let R2
0 := �0kx0

� x?
k
2 + 2⇢0LBky0 � y?k2. Since x̃0 = x0 and

ỹ0 = y0, from (46), we have S⇢k�1(z
k, �̂0) = L⇢k�1(z

k, �̂0)� F ?
 ⌧2k�1R

2
0 

2R2
0

(k+1)2 . Moreover,

⇢k�1 = ⇢0

⌧2
k�1

�
⇢0(k+1)2

4 and ⇢k�1S⇢k�1(z
k, �̂0)  ⇢0R2

0. Substituting these estimates into (6), we
obtain (9).

4.1 Lower bound of convergence rate for the semi-strongly convex case

We consider again example (32), where we assume that g is µg-strongly convex. Algorithm 2 for
solving (32) are special cases of (33) if g is strongly convex. Then, by [28, Theorem 2], the lower
bound complexity of (33) to achieve x̂ such that F (x̂)� F ?

 " is ⌦
⇣

1p
"

⌘
. Consequently, the rate

of Algorithm 2 stated in Theorem 3.2 is optimal.

E Additional numerical experiments

We provide more numerical examples to support our theory presented in the main text.
5.1 The `1-Regularized Least Absolute Derivation (LAD)

We consider the following `1-regularized least absolute derivation (LAD) problem widely studied in
the literature:

F ? := min
y2Rp2

n
F (y) := kBy � ck1 + kyk1

o
, (51)

where B 2 Rn⇥p̂ and c 2 Rn are given, and  > 0 is a regularization parameter. This problem is
completely nonsmooth. If we introduce x := By � c, then we can reformulate (51) into (1) with two
objective functions f(x) := kxk1 and g(y) := kyk1 and a linear constraint �x+By = c.

We use problem (51) to verify our theoretical results presented in Theorem 3.1 and Theorem
3.2. We implement Algorithm 1 (NEAPAL), its parallel scheme (NEAPAL-par), and Algorithm

2 (scvx-NEAPAL). We compare these algorithms with ASGARD [23] and its restarting variant,
Chambolle-Pock’s method [3], and standard ADMM [2]. For ADMM, we reformulate (51) into the
following constrained setting:

min
x,y,z

n
kxk1 + kzk1 | �x+By = c, y � z = 0

o

to avoid expensive subproblems. We solve the subproblem in x using a preconditioned conjugate
gradient method (PCG) with at most 20 iterations or up to 10�5 accuracy.

We generate a matrix B using standard Gaussian distribution N (0, 1) without and with correlated
columns, and normalize it to get unit column norms. The observed vector c is generated as c :=
Bx\ + �̂L(0, 1), where x\ is a given s-sparse vector drawn from N (0, 1), and �̂ = 0.01 is the
variance of noise generated from a Laplace distribution L(0, 1). For problems of the size (m,n, s) =
(2000, 700, 100), we tune to get a regularization parameter  = 0.5.

We test these algorithms on two problem instances. The configuration is as follows:

• For NEAPAL and NEAPAL-par, we set ⇢0 := 5, which is obtained by upper bounding
2k�?k

kBkky0�y?k as suggested by the theory. Here, y? and �? are computed with the best
accuracy using an interior-point algorithm in MOSEK.

• For scvx-NEAPAL we set ⇢0 = 1
4kBk2 by choosing µg = 0.5.

• For Chambolle-Pock’s method, we run two variants. In the first variant, we set step-sizes
⌧ = � = 1

kBk , and in the second one we choose ⌧ = 0.01 and � = 1
kBk2⌧ as suggested

in [3], and it works better than ⌧ = 1
kBk . We name these variants by CP and CP-0.01,

respectively.
• For ADMM, we tune different penalty parameters and arrive at ⇢ = 10 that works best in

this experiment.
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The result of two problem instances are plotted in Figure 4. Here, ADMM-1 and ADMM-10 stand for
ADMM with ⇢ = 1 and ⇢ = 10, respectively. CP and CP-0.01 are the first and second variants of
Chambolle-Pock’s method, respectively. ASGARD-rs is a restarting variant of ASGARD, and avg-
stands for the relative objective residuals evaluated at the averaging sequence in Chambolle-Pock’s
method and ADMM. Note that the O

�
1
k

�
-rate of these two methods is proved for this averaging

sequence.
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Figure 4: Convergence behavior of 9 algorithmic variants on two instances of (51) after 1000 iterations. Left:
Without correlated columns; Right: With 50% correlated columns.

We can observe from Figure 4 that scvx-NEAPAL is the best. Both NEAPAL and NEAPAL-par have
the same performance in this example and slightly slower than CP-0.01, ADMM-10 and ASGARD-rs.
Note that ADMM requires to solve a linear system by PCG which is always slower than other
methods including NEAPAL and NEAPAL-par. CP-0.01 works better than CP in late iterations but
is slow in early iterations. ASGARD and ASGARD-rs remain comparable with CP-0.01. Since both
Chambolle-Pock’s method and ADMM have O

�
1
k

�
-convergence rate on the averaging sequence, we

also evaluate the relative objective residuals and plot them in Figure 4. Clearly, this sequence shows
its O

�
1
k

�
-rate but this rate is much slower than the last iterate sequence in all cases. It is also much

slower than NEAPAL and NEAPAL-par, where both schemes have a theoretical guarantee.

5.2 Image compression using compressive sensing

In this last example, we consider the following constrained convex optimization model in compressive
sensing of images:

min
Y 2Rp1⇥p2

n
f(Y ) := kDY k2,1 | L(Y ) = b

o
, (52)

where D is 2D discrete gradient operator representing a total variation (isotropic) norm, L : Rp1⇥p2 !

Rn is a linear operator obtained from a subsampled transformation scheme [2], and b 2 Rn is a
compressive measurement vector [1]. Our goal is to recover a good image Y from a small amount of
measurement b obtained via a model-based measurement operator L. To fit into our template (1), we
introduce x = DY to obtain two linear constraints L(Y ) = b and �x+DY = 0. In this case, the
constrained reformulation of (52) becomes

F ? := min
x,Y

n
F (z) := kxk2,1 | x�DY = 0, L(Y ) = b

o
,

where f(x) = kxk2,1, and g(Y ) = 0.

We now apply Algorithm 1 (NEAPAL), its parallel variant (NEAPAL-par), and Algorithm 2
(scvx-NEAPAL) to solve this problem and compare them with the CP method in [3] and ADMM
[2]. We also compare our methods with a line-search variant Ls-CP of CP recently proposed in [3].

In CP and Ls-CP, we tune the step-size ⌧ and find that ⌧ = 0.01 works well. The other parameters
of Ls-CP are set as in the previous examples. For NEAPAL and NEAPAL-par, we use ⇢0 := 2kBk2.
We also use ⇢0 := 10kBk2 and call the variant of Algorithm 1 and its parallel scheme NEAPAL-v2
and NEAPAL-par-v2, respectively in this case. We set µg := 1

2kBk in scvx-NEAPAL as a guess for
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restricted strong convexity parameter. For the standard ADMM algorithm, we tune its penalty parameter
and find that ⇢ := 20 works best.

We test all the algorithms on 4 MRI images: MRI-of-knee, MRI-brain-tumor, MRI-hands, and
MRI-wrist.3 We follow the procedure in [2] to generate the samples using a sample rate of 25%.
Then, the vector of measurements c is computed from c := L(Y \), where Y \ is the original image.

Table 2: Performance and results of 8 algorithms on 4 MRI images

Algorithms f(Y k) kL(Y k)�bk
kbk Error PSNR Time[s] f(Y k) kL(Y k)�bk

kbk Error PSNR Time[s]
MRI-knee (779 ⇥ 693) MRI-brain-tumor (630 ⇥ 611)

NEAPAL 24.350 2.637e-02 4.672e-02 83.93 80.15 36.101 2.724e-02 6.575e-02 79.50 53.77
NEAPAL-par 24.335 2.539e-02 4.676e-02 83.93 98.38 36.028 2.738e-02 6.595e-02 79.47 52.71
NEAPAL-v2 28.862 7.125e-05 4.143e-02 84.98 73.56 39.317 5.226e-05 6.310e-02 79.85 52.97

NEAPAL-par-v2 29.183 7.247e-05 4.007e-02 85.27 95.49 39.594 5.338e-05 6.258e-02 79.93 51.64
scvx-NEAPAL 24.633 2.295e-02 4.424e-02 84.41 87.96 36.783 2.184e-02 5.780e-02 80.62 65.12

CP 24.897 2.674e-02 4.629e-02 84.01 101.22 37.745 3.613e-02 7.896e-02 77.91 63.71
Ls-CP 24.955 2.638e-02 4.659e-02 83.96 106.11 38.139 3.414e-02 7.485e-02 78.37 66.12

ADMM 25.071 2.556e-02 4.654e-02 83.97 902.79 38.941 2.895e-02 6.135e-02 80.10 655.81
MRI-hands (1024 ⇥ 1024) MRI-wrist (1024 ⇥ 1024)

NEAPAL 45.207 2.081e-02 2.765e-02 91.37 146.41 29.459 1.802e-02 3.224e-02 90.04 152.51
NEAPAL-par 45.207 2.081e-02 2.765e-02 91.37 140.41 29.459 1.802e-02 3.224e-02 90.04 148.12
NEAPAL-v2 48.679 7.336e-05 2.074e-02 93.87 138.65 30.578 8.516e-05 2.572e-02 92.00 146.05

NEAPAL-parallel-v2 48.858 7.483e-05 2.008e-02 94.15 148.79 30.768 8.766e-05 2.473e-02 92.34 146.64
scvx-NEAPAL 45.426 1.820e-02 2.588e-02 91.95 154.35 29.403 1.647e-02 3.131e-02 90.29 157.35

CP 45.723 2.489e-02 3.895e-02 88.40 159.74 30.052 2.032e-02 3.661e-02 88.93 165.58
Ls-CP 53.640 2.724e-02 3.924e-02 88.33 162.94 39.396 2.353e-02 3.856e-02 88.48 168.29

ADMM 45.985 2.034e-02 3.443e-02 89.47 1691.53 29.922 1.825e-02 3.686e-02 88.88 1503.56

The performance and results of these algorithms are summarized in Table 2, where f(Y k) :=

kDY k
k2,1 is the objective value, Error := kY k�Y \kF

kY \kF
presents the relative error between the

original image Y \ to the reconstruction Y k after k = 300 iterations.

We observe the following facts from the results of Table 2.

• NEAPAL, NEAPAL-par, and scvx-NEAPAL are comparable with CP in terms of computational
time, PSNR, objective values, and solution errors.

• NEAPAL-v2 and NEAPAL-par-v2 give better PSNR and solution errors, but have slightly
worse objective value than the others.

• Ls-CP is slower than our methods due to additional computation.
• ADMM gives similar result in terms of the objective values, solution errors, and PSNR, but it

is much slower than other methods due to the PCG inner loop.
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