
A Detailed derivation of the weighted ELBO

We simplify the notation and write the distribution of the inference model over a subsequence hi...j

as q(hi...j) =
∏j

t=i q(ht|ht−1, wt...T ) for any 1 ≤ i ≤ j ≤ T without making the dependency

on hi−1 and the data explicit. Furthermore, let Kt = {h(k)
t }

K

k=1 ∼ q(ht) be short for a set of K
samples of ht from the inference model. Finally, let θ summarize all parameters of both, generative
and inference model.

The key idea is to write the marginal as a nested expectation

P (w) = Eq(h1)

[
P (w1,h1)Eq(h2...T ) [P (w2...T ,h2...T |h1)]

]
(14)

and observe that we can perform an MC estimate with respect to h1 only

P (w) ≈ EK1

[
P (w1,h1)Eq(h2...T )

[
P (w2...T ,h2...T |h(k)

1 )
] ]

(15)

The same argument applies for P (w,h)
q(h) , the integrand in the ELBO. Now we can repeat the IWAE

argument from [BGS15] for the outer expectation

logP (w) = logEq(h)

[
P (w,h)

q(h)

]
(16)

= logEq(h1)

[
P (w1,h1)

q(h1)
Eq(h2...T )

[
P (w2...T ,h2...T |h1)

q(h2...T )

]]
(17)

= logEK1

[
1

K

K∑
k=1

P (w1,h
(k)
1 )

q(h
(k)
1 )

Eq(h2...T )

[
P (w2...T ,h2...T |h(k)

1 )

q(h2...T )

]]
(18)

≥ EK1

[
log

1

K

K∑
k=1

P (w1,h
(k)
1 )

q(h
(k)
1 )

Eq(h2...T )

[
P (w2...T ,h2...T |h(k)

1 )

q(h2...T )

]]
= L (19)

(20)
where we have used the above factorization in (17), MC sampling in (18) and Jensen’s inequality in
(19). Now we can identify

ω
(k)
1 =

P (w1,h
(k)
1 )

q(h
(k)
1 )

Eq(h2...T )

[
P (w2...T ,h2...T |h(k)

1 )

q(h2...T )

]
(21)

and use the log-derivative trick to derive gradients

∇L = EK1

[
K∑

k=1

ω
(k)
1∑

k′ ω
(k′)
1

∇ logω
(k)
1

]
(22)

Again, we have omitted carrying out the re-parametrization trick explicitly when moving the gradient
into the expectation and refer to the original paper for a more rigorous version. The gradient of the
logarithm decomposes into two terms,

g1
t = ∇ log

P (w1,h1)

q(h1)
(23)

g2
t = ∇ logEq(h2...T )

[
P (w2...T ,h2...T |h1)

q(h2...T )

]
(24)

The first is the contribution to our original ELBO normalized by the IWAE MC weights. The second
is identical to our starting-point in (16) but for t = 2 . . . T and conditioned on h

(k)
1 . Iterating the

above for t = 2 . . . T yields the desired bound.

To allow tractable gradient computation using the importance-weighted bound, we use two simplifica-
tions. First, we limit the computation of the weights ω(k)

t to a finite horizon of size 1 which reduces
them to only the first factor in (21). Second, we forward only a single sample ht to the next time-step
to remain in the usual single-sample sequential ELBO regime (which is important as g2

t depends
on ht−1). That is, we sample ht proportional to the weights ω(k)

t . . . ω
(k)
t . A more sophisticated

solution would be to incorporate techniques from particle filtering which maintain a fixed-size sample
population {h(1)

t , . . . ,h
(K)
t } that is updated over time.
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