A Detailed derivation of the weighted ELBO

We simplify the notation and write the distribution of the inference model over a subsequence $\mathbf{h}_{i...j}$ as $q(\mathbf{h}_{i...j}) = \prod_{t=i}^{j} q(\mathbf{h}_t | \mathbf{h}_{t-1}, w_{t...T})$ for any $1 \leq i \leq j \leq T$ without making the dependency on \mathbf{h}_{i-1} and the data explicit. Furthermore, let $\mathcal{K}_t = {\{\mathbf{h}_t^{(k)}\}}_{k=1}^K \sim q(\mathbf{h}_t)$ be short for a set of K samples of \mathbf{h}_t from the inference model. Finally, let θ summarize all parameters of both, generative and inference model.

The key idea is to write the marginal as a nested expectation

$$
P(\mathbf{w}) = \mathbb{E}_{q(\mathbf{h}_1)} \Big[P(w_1, \mathbf{h}_1) \mathbb{E}_{q(\mathbf{h}_{2...T})} \left[P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1) \right] \Big] \tag{14}
$$

and observe that we can perform an MC estimate with respect to \mathbf{h}_1 only

$$
P(\mathbf{w}) \approx \mathbb{E}_{\mathcal{K}_1} \left[P(w_1, \mathbf{h}_1) \mathbb{E}_{q(\mathbf{h}_2...T)} \left[P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1^{(k)}) \right] \right]
$$
(15)

The same argument applies for $\frac{P(w,h)}{q(h)}$, the integrand in the ELBO. Now we can repeat the IWAE argument from [\[BGS15\]](#page--1-0) for the outer expectation

$$
\log P(\mathbf{w}) = \log \mathbb{E}_{q(\mathbf{h})} \left[\frac{P(\mathbf{w}, \mathbf{h})}{q(\mathbf{h})} \right]
$$
(16)

$$
= \log \mathbb{E}_{q(\mathbf{h}_1)} \left[\frac{P(w_1, \mathbf{h}_1)}{q(\mathbf{h}_1)} \mathbb{E}_{q(\mathbf{h}_2...T)} \left[\frac{P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1)}{q(\mathbf{h}_{2...T})} \right] \right]
$$
(17)

$$
= \log \mathbb{E}_{\mathcal{K}_1} \left[\frac{1}{K} \sum_{k=1}^K \frac{P(w_1, \mathbf{h}_1^{(k)})}{q(\mathbf{h}_1^{(k)})} \mathbb{E}_{q(\mathbf{h}_{2...T})} \left[\frac{P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1^{(k)})}{q(\mathbf{h}_{2...T})} \right] \right]
$$
(18)

$$
\geq \mathbb{E}_{\mathcal{K}_1} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{P(w_1, \mathbf{h}_1^{(k)})}{q(\mathbf{h}_1^{(k)})} \mathbb{E}_{q(\mathbf{h}_{2...T})} \left[\frac{P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1^{(k)})}{q(\mathbf{h}_{2...T})} \right] \right] = \mathcal{L}
$$
(19)

where we have used the above factorization in [\(17\)](#page-0-0), MC sampling in [\(18\)](#page-0-1) and Jensen's inequality in [\(19\)](#page-0-2). Now we can identify

$$
\omega_1^{(k)} = \frac{P(w_1, \mathbf{h}_1^{(k)})}{q(\mathbf{h}_1^{(k)})} \mathbb{E}_{q(\mathbf{h}_{2...T})} \left[\frac{P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1^{(k)})}{q(\mathbf{h}_{2...T})} \right]
$$
(21)

and use the log-derivative trick to derive gradients

$$
\nabla \mathcal{L} = \mathbb{E}_{\mathcal{K}} \left[\sum_{k=1}^{K} \frac{\omega_1^{(k)}}{\sum_{k'} \omega_1^{(k')}} \nabla \log \omega_1^{(k)} \right]
$$
(22)

Again, we have omitted carrying out the re-parametrization trick explicitly when moving the gradient into the expectation and refer to the original paper for a more rigorous version. The gradient of the logarithm decomposes into two terms,

$$
g_t^1 = \nabla \log \frac{P(w_1, \mathbf{h}_1)}{q(\mathbf{h}_1)}
$$
(23)

$$
g_t^2 = \nabla \log \mathbb{E}_{q(\mathbf{h}_{2...T})} \left[\frac{P(w_{2...T}, \mathbf{h}_{2...T} | \mathbf{h}_1)}{q(\mathbf{h}_{2...T})} \right]
$$
(24)

The first is the contribution to our original ELBO normalized by the IWAE MC weights. The second is identical to our starting-point in [\(16\)](#page-0-3) but for $t = 2...T$ and conditioned on $\mathbf{h}_1^{(k)}$. Iterating the above for $t = 2 \dots T$ yields the desired bound.

To allow tractable gradient computation using the importance-weighted bound, we use two simplifications. First, we limit the computation of the weights $\omega_t^{(k)}$ to a finite horizon of size 1 which reduces them to only the first factor in [\(21\)](#page-0-4). Second, we forward only a single sample h_t to the next time-step to remain in the usual single-sample sequential ELBO regime (which is important as g_t^2 depends on \mathbf{h}_{t-1}). That is, we sample \mathbf{h}_t proportional to the weights $\omega_t^{(k)} \dots \omega_t^{(k)}$. A more sophisticated solution would be to incorporate techniques from particle filtering which maintain a fixed-size sample population $\{\mathbf{h}_t^{(1)}, \ldots, \mathbf{h}_t^{(K)}\}$ that is updated over time.