Self-Adaptable Templates for Feature Coding

Xavier Boix!2* Gemma Roig"'?>* Salomon Diether! Luc Van Gool'

LComputer Vision Laboratory, ETH Zurich, Switzerland
2LCSL, Massachusetts Institute of Technology & Istituto Italiano di Tecnologia, Cambridge, MA
{xboix, gemmar}@mit.edu
{boxavier, gemmar, sdiether, vangool}@vision .ee.ethz.ch

Abstract

Hierarchical feed-forward networks have been successfully applied in object
recognition. At each level of the hierarchy, features are extracted and encoded,
followed by a pooling step. Within this processing pipeline, the common trend is
to learn the feature coding templates, often referred as codebook entries, filters, or
over-complete basis. Recently, an approach that apparently does not use templates
has been shown to obtain very promising results. This is the second-order pooling
(O2P) 1} 12, 13,14, 15]). In this paper, we analyze O2P as a coding-pooling scheme.
We find that at testing phase, O2P automatically adapts the feature coding tem-
plates to the input features, rather than using templates learned during the training
phase. From this finding, we are able to bring common concepts of coding-pooling
schemes to O2P, such as feature quantization. This allows for significant accuracy
improvements of O2P in standard benchmarks of image classification, namely
Caltech101 and VOCO7.

1 Introduction

Many object recognition schemes, inspired from biological vision, are based on feed-forward hier-
archical architectures, e.g. [0, (7, 8]. In each level in the hierarchy, the algorithms can be usually
divided into the steps of feature coding and spatial pooling. The feature coding extracts similarities
between the set of input features and a set of templates (the so called filters, over-complete basis or
codebook), and then, the similarity responses are transformed using some non-linearities. Finally,
the spatial pooling extracts one single vector from the set of transformed responses. The specific ar-
chitecture of the network (e.g. how many layers), and the specific algorithms for the coding-pooling
at each layer are usually set for a recognition task and dataset, cf. [9].

Second-order Pooling (O2P) is an alternative algorithm to the aforementioned coding-pooling
scheme. O2P has been introduced in medical imaging to analyze magnetic resonance images [2],
and lately, O2P achieved state-of-the-art in some of the traditional computer vision tasks [3} 4,5, [10]].
A surprising fact of O2P is that it is formulated without feature coding templates [5]]. This is in con-
trast to the common coding-pooling schemes, in which the templates are learned during a training
phase, and at testing phase, the templates remain fixed to the learned values.

Motivated by the intriguing properties of O2P, in this paper we try to re-formulate O2P as a coding-
pooling scheme. In doing so, we find that O2P actually computes similarities to feature coding
templates as the rest of the coding-pooling schemes. Yet, what remains uncommon of O2P, is that
the templates are “recomputed” for each specific input, rather than being fixed to learned values. In
O2P, the templates are self-adapted to the input, and hence, they do not require learning.

From our formulation, we are able to bring common concepts of coding-pooling schemes to O2P,
such as feature quantization. This allows us to achieve significant improvements of the accuracy

*Both first authors contributed equally.

of O2P for image classification. We report experiments on two challenging benchmarks for image
classification, namely Caltech101 [[11], and VOCO7 [12].

2 Preliminaries

In this Section, we introduce O2P as well as several coding-pooling schemes, and identify some
common terminology in the literature. This will serve as a basis for the new formulation of O2P,
that we introduce in the following section.

The algorithms that we analyze in this section are usually part of a layer of a hierarchical network
for object recognition. The input to these algorithms is a set of feature vectors that come from the
output of the previous layer, or from the raw image. Let {x;} be the set of input feature vectors
to the algorithm, which is the set of N feature vectors, x; € RM, indexed by i € {1,...,N}.
The output of the algorithm is a single vector, which we denote as y, and it may have a different
dimensionality than the input vectors.

In the following subsections, we present the algorithms and terminology of template-based methods,
and then, we introduce the formulation of O2P that appears in the literature that apparently does not
use templates.

2.1 Coding-Pooling based on Evaluating Similarities to Templates

Template-based methods are build upon similarities between the input vectors and a set of templates.
Depending on the terminology of each algorithm, the templates may be denoted as filters, codebook,
or over-complete basis. From now on, we will refer to all of them as templates. We denote the set
of templates as {by € RM}p. In this paper, by, and the input feature vectors x; have the same
dimensionality, M. The set of templates is fixed to learned values during the training phase. There
are many possible learning algorithms, but analyzing them is not necessary here.

The algorithms that are interesting for our purposes, start by computing a similarity measure between
the input feature vectors {x;}y and the templates {by}p. Let I'(x;, by) be the similarity function,
which depends on each algorithm. We define =y, as the vector that contains the similarities of x; to
the set of templates {by}, and v € RM*¥ the matrix whose columns are the vectors 7, i.e.

Vi = (x4, by).)]

Once - is computed, the algorithms that we analyze apply some non-linear transformation to ~, and
then, the resulting responses are merged together, with the so called pooling operation. The pooling
consists on generating one single response value for each template. We denote as g, () the function
that includes both the non-linear transformation and the pooling operation, where g;, : RM*¥ — R.
We include both operations in the same function, but in the literature it is usually presented as two
separate steps. Finally, the output vector y is built using {gx ()} p, {bx}p and {x;}~, depending
on the algorithm. It is also quite common to concatenate the outputs of neighboring regions to
generate the final output of the layer.

We now show how the presented terminology is applied to some methods based on evaluating sim-
ilarities to templates, namely assignment-based methods and Fisher Vector. In the sequel, these
algorithms will be a basis to reformulate O2P.

Assignment-based Methods The popular Bag-of-Words and some of its variants fall into this
category, e.g. [13, (14} [15]. These methods consist on assigning each input vector x; to a set of
templates (the so called vector quantization), and then, building a histogram of the assignments,
which corresponds to the average pooling operation.

We now present them using our terminology. After computing the similarities to the templates, ~
(usually based on ¢y distance), gx () computes both the vector quantization and the pooling. Let
s be the number of templates to which each input vector is assigned, and let +} be the resulting
assignment vector of x; (i.e. 7y} is the result of applying vector quantisation on x;). <} has s entries
set to 1 and the rest to 0, that indicate the assignment. Finally, g () also computes the pooling for
the assignments corresponding to the template k, i.e. gi(7) = 7 ., 5 V}i- The final output vector
is the concatenation of the resulting pooling of the different templates, y = (g1 (%), ..., gp(7Y)).

Fisher Vectors It uses the first and second order statistics of the similarities between the features
and the templates [16]. Fisher Vector builds two vectors for each template by, which are

@ _ 1 2 _ 1
P, = A, g i (br —x;) @7 = B, E Vi ((br — x;)? — Cy) (2)
<N <N
1 1 \
where i = —-exp | —5(x; — bg) Dr(x; —by) | . 3)
7 2

Ay, By, C), are learned constants, Zj, a normalization factor and Dy, is a learned constant matrix of
the model. Note that in Eq. (3), vk is a similarity between the feature vector x; and the template by,.
The final output vector is y = (<I>:(L1), <I>§2) ey ‘}g), @g)). For further details we refer the reader
to [LL6].

We use our terminology to do a very simple re-write of the terms. We define gx,(y) and bi (we use
the super-index F' to indicate that are from Fisher vectors, and different from by,) as

1

9k(Y)

We can see the templates of Fisher vectors, bF , are obtained from computing some transformations
to the original learned template by, which involve the input set of features {x;}. gi () is the norm

a(v) = (@, 22))2, bf = (@, @))

of (<I>,(€1), ‘I>§f)), which gives an idea of the importance of each template in {x;}, similarly to gx ()
in assignment-based methods. Note that b and g («y) are related to only one fixed template, by,.
The final output vector becomes y = (g1 (v)b?', ..., gp(7)bE).

2.2 Second-Order Pooling

Second-order Pooling (O2P) was introduced in medical imaging to describe the voxels produced in
diffusion tensor imaging [[1]], and to process tensor fields [2,[17]. O2P starts by building a correlation
matrix from the set of feature (column) vectors {x; € RM} v, i.e.

1
K= N Z x;x, 5)
i<N

where x! is the transpose vector of x;, and K € RM>*M jg a square matrix. K is a symmetric positive
definite (SPD) matrix, and contains second-order statistics of {x;}. The set of SPD matrices form
a Riemannian manifold, and hence, the conventional operations in the Euclidean space can not be
used. Several metrics have been proposed for SPD matrices, and the most celebrated is the Log-
Euclidean metric [17]. Such metric consists of mapping the SPD matrices to the tangent space by
using the logarithm of the matrix, log(K). In the tangent space, the standard Euclidean metrics can
be used.

The logarithm of an SPD matrix can be computed in practice by applying the logarithm individually
to each of the eigenvalues of K [18]]. Thus, the final output vector for O2P can be written as

y = vec (log(K)) = vec (Z log()\k)eke}i> , (6)

k<M

where ey, are the eigenvectors of K, and A, the corresponding eigenvalues. The vec(-) operator
vectorizes log(K).

In Eq. (6), apparently, there are no similarities to a set of templates. The absence of templates makes
O2P look quite different from template-based methods. Recently, O2P achieved state-of-the-art
results in some computer vision tasks, e.g. in object detection [3]], semantic segmentation [3} [10],
and for patch description [4]. Both reasons, motivates us to further analyze O2P in relation to
template-based methods.

3 Self-Adaptability of the Templates

In this section, we introduce a formulation that relates O2P and template-based methods. The new
formulation is based on comparing two final representation vectors, rather than defining how the

final vector y is built. We denote (y”,y*®) as the inner product between y” and y*, which are the
final representation vectors from two sets of input feature vectors, {x] } 5 and {x}} n, respectively,
where we use the superscripts r and s to indicate the respective representation for each set. It will
become clear during this section why we analyze (y”,y?®) instead of y.

We divide the analysis in three subsections. In subsection we re-write the formulation of the
template-based methods of Section [2| with the inner product (y",y*®). In subsection we do the
same for O2P, and this unveils that O2P is also based on evaluating similarities to templates. In
subsection we analyze the characteristics of the templates in O2P, which have the particularity
that are self-adapted to the input.

3.1 Re-Formulation of Template-Based Methods

We re-write a generic formulation for the template-based methods described in Section 2| with the
inner product between two final output vectors. The algorithms of Section[2]can be expressed as

o7y =Y gr(¥)g(v*)S (b, bY), @)
k<P q<P
where Vi = F(X“ bk))7
and S(u, v) is a similarity function between the templates that depends on each algorithm. Recall
that gx () is a function that includes the non-linearities and the pooling of the similarities between

the input feature vectors and the the templates. To see how Eq. arises naturally from the algo-
rithms of Section[2] we now analyze them in terms of this formulation.

Assignment-Based Methods The inner product between two final output vectors can be written
as

" y®) =g ("), ,gp(’vr))t(gf(’vs), o gp(YF) =
=Y o) =3 Y k(Y)gg(¥)I(bE = b3), ®)
k<P k<P q<P

where the last step introduces an outer summation, and the indicator function I(-) eliminates the
unnecessary cross terms. Comparing this last equation to Eq. (7)), we can identify that S(b},, b;) is
the indicator function (returns 1 when b = b;, and 0 otherwise).

Fisher Vectors The inner product between two final Fisher Vectors is
"y =((v T)bTFwwgP(E) (g1 (v)i, gp(v)bE)
=3 > g(¥)ga (v)L(by, = b)) (b}", bF).)
k<P gq<P

The indicator function appears for the same reason as in Assignment-Based Methods. The final
templates for each set of input vectors, b7, bi", respectively, are compared with each other with
the similarity (b},")*bs¥. Thus, S(b}, bi) in Eq. (7) is equal to I(bj, = b3)(biF) b,

3.2 O2P as Coding-Pooling based on Template Similarities

We now re-formulate O2P, in the same way as we did for template-based methods in the previous
subsection. This will allow relating O2P to template-based methods, and show that O2P also uses
similarities to templates.

We re-write the definition of O2P in Eq. (6) with (y”,y*®). Using the property vec(A)'vec(B) =
tr(A'B), where tr(-) is the trace function of a matrix, (y",y*) becomes (in the supplementary
material we do the full derivation)

(y",y%) = (vec (log(K")) , vec (log(K?))) =

D) log(Ap) log(Xs)(er, €5), (10)

k<M q<M

where eye!, is a square matrix, and the eigenvectors, {e}, } 1 and {e; } s, are compared all against
each other with (e}, eZ)Q. Going back to the generic formulation of template-based methods in

Method S(by, by) Yii = L(x;,by) templates gk ()
Assignment-based I(bj, =by) (xi, bg) fixed = > Vi

Fisher Vectors I(b, =b)(b;",b3f) Eq.(B) fixed/adapted |[(® ,(f), (2))||2
02P (b}, bs)? (x;,bp)? self-adapted log (5 Z

Table 1: Summary Table of the elements of our formulation for Assignment-based methods, Fisher
Vectors and O2P.

Eq. (7)., we can see that the similarity function between the templates, S(e],, e q) can be identified in
O2P as (e}, e > Also, note that in O2P the sums go over M, which is the number of eigenvectors,

and in Eq. . go over P, which is the number of templates. Finally, gx(7) in Eq. (7) corresponds
to log(A) in O2P.

At this point, we have expressed O2P in a similar way as template-based methods. Yet, we still have
to find the similarity between the input feature vectors and the templates. For that purpose, we use
the definition of eigenvalues and eigenvectors, i.e. \yer = Keg, and also that tr(ekeff) = 1 (the
eigenvectors are orthonormal). Then we can derive the following equivalence: \;, = Aktr(eke W)=
tr(Keye!,). Replacing K by + N D x;x!, we find that the eigenvalues, \j, can be written using the
similarity between the input vectors, x;, and the eigenvectors, ey:

1
Ztr ((x;x%)(erel)) = NZ(xi,ek>2. (11)

Finally, we can integrate all the above derivations in Eq. (I0), and we obtain that

=D > a()9()(eps€5)?, (12)

k<M q<M
where g () = log(Ax) = log (Z *y;ﬂ> , (13)
i<N
and Yki = F(Xi, ek) = <Xi,ek>2. (14)

We can see by analyzing Eq. (I2) that this equation takes the same form as the general equation
of template-based methods in Eq. (7). Note that the eigenvectors take the same role as the set of
templates, i.e. b, = ey and P = M. Also, observe that S(by, by) is the square of the inner product
between eigenvectors, I'(x;, by) is the square of the inner product between the input vectors and the
eigenvectors, and the pooling operation is the logarithm of the average of the similarities. In Table/T]
we summarize the corresponding elements of all the described methods.

3.3 Self-Adaptative Templates

We define self-adaptative templates as templates that only depend on the input set of feature vec-
tors, and are not fixed to predefined values. This is the case in O2P, because the templates in O2P
correspond to the eigenvectors computed from the set of input feature vectors. The templates in
O2P are not fixed to values learned during the training phase. Interestingly, the final templates in
Fisher Vectors, bf, are also partially self-adapted to the input vectors. Note that bf" are obtained by
modifying the fixed learned templates, by, with the input feature vectors.

Finally, note that in O2P the number of templates is equal to the dimensionality of the input feature
vectors. Thus, in O2P the number of templates can not be increased without changing the input
vectors’ length, M. This begs the following question: do M templates allow for sufficient gener-
alization for object recognition for any set of input vectors? We analyze this question in the next
section.

4 Application: Quantization for O2P

We observe in the experiments section that the performance of O2P degrades when the number of
vectors in the set of input features increases. It is reasonable that M templates are not sufficient
when the number of different vectors in {x;}y increases, specially when they are very different

Algorithm 1: Sparse Quantization in O2P

Inmput: {x;}n, k
Output: y
foreachi = {1,..., N} do
| x; + Set k highest values of x; to its vector entry: x;, and the rest to 0
end

from each other. We now introduce an algorithm to increase the robustness of O2P to the variability
of the input vectors.

We quantize the input feature vectors, {x;}, before computing O2P. Quantization may discard de-
tails, and hence, reduce the variability among vectors. In the experiments section it is reported
that this allows preventing the degradation of performance in object recognition, when the number
of input feature vectors increases. The quantization algorithm that we use is sparse quantization
(SQ) [15,119]), because SQ does not change the dimensionality of the feature vector. Also, SQ is fast
to compute, and does not increase the computational cost of O2P.

Sparse Quantization for O2P For the quantization of {x;} we use SQ, which is a quantization
to the set of k-sparse vectors. Let R} be the set of k-sparse vectors, i.e. {s € R? : ||s|]jo < k}.
Also, we define B] = {0,1}7 = {s € {0,1}7 : ||s|lo = k}, which is the set of binary vectors
with % elements set to one and (¢ — k) set to zero. The cardinality of [BY| is equal to ({). The
quantization of a vector v € R? into a codebook {c;} is a mapping of v to the closest element in
{ci}, ie. v* = argminge(c,y [|[V — v||%, where ¥* is the quantized vector v. In the case of SQ, the
codebook {c;} contains the set of k-sparse vectors. These may be any of the previously introduced
types: R}, B} . An important advantage of SQ over a general quantization is that it can be computed
much more efficiently. The naive way to compute a general quantization is to evaluate the nearest
neighbor of v in {c;}, which may be costly to compute for large codebooks and high-dimensional
v. In contrast, SQ can be computed by selecting the k higher values of the set {v;}, i.e. for SQ into
RZ, 0; = v, if ¢ is one of the k-highest entries of vector v, and 0 otherwise. For SQ into IB%Z, the
dimension indexed by the k-highest are set to 1 instead of v;, and 0 otherwise. (We refer the reader
to 15, [19] for a more detailed explanation on SQ).

In Algorithm [I] we depict the implementation of SQ in O2P, which highlights its simplicity. The
computational cost of SQ is negligible compared to the cost of computing O2P. We use the set of
k-sparse vectors in R} for SQ, which worked best in practice, as shown in the following.

S Experiments

In this section, we analyze O2P in image classification from dense sampled SIFT descriptors. This
setup is common in image classification, and it allows direct comparison to previous works on O2P.
We report results on the Caltech101 [11]] and VOCO7 [12] datasets, using the standard evaluation
benchmarks, which are the mean average precision accuracy across all classes.

5.1 Implementation Details

We use the standard pipeline for image classification. We never use flipped or blurred images to
extend the training set.

Pipeline. For Caltech101, the image is re-sized to take a maximum height and width of 300
pixels, which is the standard resizing protocol for this dataset. For VOCO07 the size of the images
remains the same as the original. We extract SIFT [8] from patches on a regular grid, at different
scales. In Caltech 101, we extract them at every 8 pixels and at the scales of 16, 32 and 48 pixels
diameter. In VOCO7, SIFT is sampled at each 4 pixels and at the scales of 12, 24 and 36 pixels
diameter. O2P is computed using the SIFT descriptors as input, and using spatial pyramids. In

Caltech101, we generate the pooling regions dividing the image in 4 x 4, 2 x 2 and 1 x 1 regions,
and in VOCO7 in 3 x 1, 2 x 2 and 1 x 1 regions. To generate the final descriptor for the whole
image, we concatenate the descriptors for each pooled region. We apply the power normalization to
the final feature dimensions, sign(x)|x|>/4, that was shown to work well in practice [3]]. Finally, we
use a linear one-versus-rest SVM classifier for each class with the parameter C' of the SVM set to
1000. We use the LIBLINEAR library for the SVMJ[20].

Other Feature Codings. As a sanity check of our results, we replace O2P with the Bag-of-
Words [[13] baseline, without changing any of the parameters. In Caltech101, we replace the average
pooling of Bag-of-Words by max-pooling (without normalization) as it performs better. The code-
book is learned by randomly picking a set of patches as codebook entries, which was shown to work
well for the encodings we are evaluating [14]]. We use a codebook of 8192 entries, since with more
entries the performance does not increase significantly, but the computational cost does.

5.2 Results on Caltech101

We use 3 random splits of 30 images per class for training and the rest for testing. In Fig. [Th, results
are shown for different spatial pyramid configurations, as well as different levels of quantization.
Note that SQ with £ = 128 is not introducing any quantization, as SIFT features are 128 dimensional
vectors. Note that using SQ increases the performance more than 5% compared to when not using
SQ (k = 128), when using only the first level of the pyramid. For the other levels of the pyramid,
there is less improvement with SQ. This is in accordance with the observation that in smaller regions
there are less SIFT vectors, the variability is smaller, and the limited amount of templates is able to
better capture the meaningful information than in bigger regions. We can also see that for small k
of SQ, the performance degrades due to the introduction of too much quantization.

We also run experiments with Bag-of-Words with max-pooling (74.8%), and O2P without SQ
(76.52%), and both of them are surpassed by O2P with SQ (78.63%). In [3]], O2P accuracy is
reported to be 79.2% with SIFT descriptor (we do not compare to their version of enriched SIFT,
since all our experiments are with normal SIFT). We inspected the code of [5], and we found that
the difference of accuracy mainly comes from using a more drastic resizing of the image, that takes
a maximum of 100 pixels of width and height (usually in the literature it is 300 pixels). Note that re-
sizing is another way of discarding information, and hence, O2P may benefit from that. We confirm
this by resizing the image back to 300 pixels in [S]]’s code, and the accuracy is 77.1%, similar to the
one that we report without SQ in our code. The accuracy is not exactly the same due to differences
in the SIFT parameters in [5]. Also, we tested SQ in [S]’s code with the resizing to a maximum of
100 pixels, and the accuracy increased to 79.45%, which is higher than reported in [5], and close to
state-of-the-art results using SIFT descriptors (80.3%) [21].

5.3 Results on VOCO07

In Fig. [Ib, we run the same experiment as in Caltech101. Note that the impact of SQ is even more
evident than in Caltech101. In Table [2| we report the per-class accuracy, in addition to the mean
average precision reported in Fig.[Tp. We follow the evaluation procedure as described in [[12].

With the full pyramid, when we use SQ the accuracy increases from 18.81% to 50.97%. In con-
trast to Caltech101, O2P with SQ performance is similar to our implementation of Bag-of-Words
(51.14%). Thus, under adverse conditions for O2P, i.e. images with high variability such as in
VOCO07 and with a high number of input vectors, we can use SQ and obtain huge improvements of
the O2P’s accuracy. The best reported results [22]] in VOCO7 are around 10% better than O2P with
SQ, yet we obtain more than 30% improvement from the baseline.

6 Conclusions

We found that O2P can be posed as a coding-pooling scheme based on evaluating similarities to tem-
plates. The templates of O2P self-adapt to the input, while the rest of the analyzed methods do not.
In practice, our formulation was used to improve the performance of O2P in image classification.
We are currently analyzing self-adaptative templates in deep hierarchical networks.

‘-0—1 pyr. =0-1+2 pyr. ~0-1+2+3 pyr. ‘ 1+2+3 pyr. w/0 SQ O SQ selected in val. set

Caltech 101 PASCAL VOC 2007
08 oo 00 B$T% 0000000 %O‘og?c;%
0000000000000 S0 ‘50.5—9888833886883 oosggooo
0.75 00-000.0-00009000065%3 @ 49.09% %090
<. 0. 000 00 5 00
) 75.55% @
© o s 0.4r .
307 f ° 41.20%
g ° S o3l
S 0.65} g
g 65.14% g
06 502 18.81%4
=
035520 40 60 80 100 128 01550 40 60 80 100 128
Sparse Quantization Sparse Quantization
(@) (b)

Figure 1: Results for different numbers of non-zero entries of SQ. Note that SQ at k£ = 128 is not
introducing any quantization, since SIFT features are 128 dimensional vectors. (a) Caltech 101
(using 30 images per class for training), (b) VOCO07.

k>
o & g 5 g
5 0 = A g &
= % [- £ 5 € g =T = Eo %ﬂ
Sc2EifsszitEiwfciZii eS| o
TR EAERRRIOCO0UARIE=SLEG SE E z
3Pyr. O2P +SQ | 72 53 45 63 23 51 69 52 50 35 44 41 74 56 78 19 35 50 67 45 | 50.97
3Pyr. O2Pw/oSQ | 34 9 1218 6 1940 14 26 14 9 21 28 1755 7 7 10 16 12 | 18.81
2 Pyr. O2P + SQ [71 50 41 62 20 50 68 47 47 33 41 37 69 56 74 18 36 51 66 44 | 49.09 |
1 Pyr. O2P +SQ | 66 41 32 58 15 37 58 38 40 27 28 30 61 43 66 20 33 37 56 36 | 41.20
1Pyr.O2Pw/0SQ | 21 7 11 9 6 8 291022 4 7 1212 8 499 6 5 7 9 9 | 12,53

Table 2: PASCAL VOC 2007 classification results. The average score provides the per-class aver-
age. We report results for O2P, with and without SQ, with the first plus second plus third levels of
pyramids (3 Pyr.), O2P with SQ with the first plus second levels of pyramids (2 Pyr.), and O2P with
and without SQ only with the first level of pyramids (1 Pyr.).

Acknowledgments: We thank the ERC for support from AdG VarCity.

References

[1] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat,
“Diffusion tensor imaging: concepts and applications,” Journal of magnetic resonance imag-
ing, 2001.

[2] J. Weickert and H. Hagen, Visualization and Processing of Tensor Fields. Springer, 2006.

[3] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor for detection and
classification,” in ECCV, 2006.

[4] P.Liand Q. Wang, “Local log-euclidean covariance matrix (L2ECM) for image representation
and its applications,” in ECCV, 2012.

[5] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic segmentation with second-
order pooling,” in ECCV, 2012.

[6] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biological cybernetics, 1980.

[7] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Nature
neuroscience, 1999.
[8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” IJCV, 2004.

[9] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures,” in ICML, 2013.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in CVPR, 2014.

[11] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” TPAMI, 2006.

[12] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman, “The PASCAL visual
object classes (VOC) challenge,” 1JCV, 2010.

[13] G. Csurka, C.R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags
of keypoints,” in Workshop on Statistical Learning in Computer Vision, ECCV, 2004.

[14] A. Coates and A. Ng, “The importance of encoding versus training with sparse coding and
vector quantization,” in ICML, 2011.

[15] X. Boix, G. Roig, and L. Van Gool, “Nested sparse quantization for efficient feature coding,”
in ECCV, 2012.

[16] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with the fisher
vector: Theory and practice,” IJCV, 2013.

[17] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Geometric means in a novel vector space
structure on symmetric positive-definite matrices,” Journal on matrix analysis and applica-
tions, 2007.

[18] R. Bhatia, Positive definite matrices. Princeton University Press, 2009.

[19] X. Boix, M. Gygli, G. Roig, and L. Van Gool, “Sparse quantization for patch description,” in
CVPR, 2013.

[20] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, “LIBLINEAR: A library for
large linear classification,” JMLR, 2008.

[21] O. Duchenne, A. Joulin, and J. Ponce, “A graph-matching kernel for object categorization,” in
ICCV, 2011.

[22] X.Zhou, K. Yu, T. Zhang, and T. S. Huang, “Image classification using super-vector coding of
local image descriptors,” in ECCV, 2010.

